
This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

1

On the Intractability of Preemptive Single-Machine Job
Scheduling with Release Times, Deadlines, and Family

Setup Times

Abhishek Singha

aWashington University in Saint Louis, One Brookings Drive, Campus Box 1045, MO
63130, Saint Louis, USA

Abstract

When building secure safety-critical software systems upon modern processors,

a system designer may wish to thwart cache side-channel attacks while ensuring

that no process misses its deadline. If the side-channel attacks are prevented in

a uniprocessor environment by flushing the cache whenever context is switched

from a process with a high security level to a process with a low security level

then the problem of scheduling processes while meeting deadlines can be mod-

eled as a single-machine job scheduling problem with release times, deadlines,

preemption, and family setup times, which is known to be NP-hard. Since we

expect the number of security levels and the worst-case cache flush time in

practical applications to be “small”, the number of families, F , and the largest

setup time, S, are natural parameters for the problem. We show that the prob-

lem, when parameterized by (F, S), is not fixed-parameter tractable by proving

that the single-machine job scheduling problem with release times, deadlines,

preemption, and two families with setup times picked from the set {0, 1} is

NP-hard. We also develop an O(n log n) algorithm for the single-machine job

scheduling problem with deadlines and two families with setup times.

Keywords: job scheduling, complexity, algorithm design, setup times,

software security, side-channel attacks

Email address: abhishek.s@wustl.edu (Abhishek Singh)

Preprint submitted to Elsevier January 21, 2022

1. Introduction

Software side-channel attacks can be constructed by leaking information be-

tween processes through the state of the processor’s memory cache; in unipro-

cessor environments, an expensive, yet effective, countermeasure is to flush the

cache on every context switch from one process to another [1]. In safety-critical

software systems it is often the case that the processes must meet certain dead-

lines, and frequent cache flushes make it harder to achieve that objective. The

frequency of cache flushes may be reduced by assigning a security level to each

process and by flushing the cache only when context is switched from a process

with a higher security level to a process with a lower security level [2].

In a job scheduling problem with setup times, a collection of jobs is par-

titioned into families such that changing over from one job to another takes

negligible (zero) time within the same family but a setup time sfg is required

when changing over from a job in family f to a job in family g. If sfg is

independent of f , then the setup times are said to be sequence-independent,

and we may denote the setup time as simply sg; otherwise, they are said to

be sequence-dependent. The problem of scheduling processes in a uniprocessor

environment with release times, deadlines, cache flush times, and security levels

may be viewed as a special case of the single-machine job scheduling problem

with release times, deadlines and family setup times:

• the single processor is mapped to a single machine;

• each process p is mapped to a job jp (process characteristics like release

times, deadlines, preemptivity are mapped to their equivalent job charac-

teristics);

• each security level l is mapped to a unique family fl such that if a process

p has security level l then the corresponding job jp belongs to family fl;

• for families f and g, sfg is zero if f does not have a higher security level

than g; otherwise sfg equals δ, where δ is the worst-case cache flush time

for the architecture. In general, the setup times are sequence-dependent.

3

Crucially, observe that the number of families and the largest setup time in

this mapping are expected to be “small”. For example, the reference multilevel

security policy in SELinux contains only 16 security levels, if we ignore category

sets [3], and Xu et al. [4] observe that the wbinvd instruction (which writes back

all the modified data in the cache and invalidates the entire shared cache on an

x86 system) takes at most 0.7 ms for the platform used in their experiments.

Thus, the number of families, denoted F , and the largest setup time, denoted S1,

are natural parameters of the problem. In this research, we wish to investigate

the complexity of single-machine job scheduling problems with respect to these

parameters.

1.1. Notation

A scheduling problem is described as a triple (α | β | γ), where α denotes

the machine environment, β denotes the job characteristics, and γ denotes the

optimality criteria [5]. For all problems considered in this paper, α and γ are

fixed to 1 and −, i.e., we are only concerned with feasibility on a single machine

with various combinations of the following job characteristics:

Symbol Job Characteristic

rj release dates

dj deadlines

pmtn preemption is permitted

sf sequence-independent family setup times

sfg sequence-dependent family setup times

F = const constant number of families

F = 2 two families

1.2. Previous Work

Ghosh and Gupta [6] developed an O(F 2nF) algorithm for (1 | dj , sfg |

Lmax), which may be adapted to solve (1 | dj , sfg | −) by comparing the output

1We assume that all input data including setup times is integral: thus, a problem instance
cannot be scaled to make S arbitrarily small, and S is a meaningful parameter.

4

Table 1: Complexity classes assuming F to be constant are shown. A1 refers to the fact that
in the absence of release times the existence of a preemptive schedule implies the existence of
a non-preemptive schedule. A2 refers to the fact that sequence-independent setup times are
a special case of sequence-dependent setup times.

Job Characteristics Complexity Class Reason

dj − sf − P By Row 3, A2

dj − sf pmtn P By Row 1, A1

dj − sfg − P From [6]
dj − sfg pmtn P By Row 3, A1

dj rj sf − Strongly NP-hard From [8]
dj rj sf pmtn Unknown −
dj rj sfg − Strongly NP-hard From [8]
dj rj sfg pmtn Unknown −

with zero. The running time of the algorithm indicates that instances of the

problem with “very small” values of F are tractable.

The main intractability result for job scheduling problems with setup times

is due to Bruno and Downey [7] who showed that (1 | dj , sf | −), is NP-hard.

Since the reduction uses an arbitrary number of families, it does not shed any

light on the tractability of (1 | dj , sf , F = const | −).

If F is assumed to be constant, then the only complexity result available to

us is due to Garey and Johnson [8] who show that (1 | rj , dj | −) is strongly

NP-hard, which implies, for instance, that (1 | rj , dj , sf , F = const | −) is

NP-hard. The complexity classes for all relevant combinations of job char-

acteristics are listed in Table 1. Note that resolving the complexity class of

(1 | rj , dj ,pmtn, sf , F = const | −) is an open problem. The tractability of

(1 | rj , dj ,pmtn | −)2 suggests that (1 | rj , dj ,pmtn, sf , F = const | −) might

be tractable. Our results show that this is not the case.

1.3. Our Results

Our first result is that (1 | rj , dj ,pmtn, sf | −) is weakly NP-hard even in

the following restricted case:

2The fundamental preemptive scheduling problem admits a polynomial-time solution that
greedily uses the ED (earliest deadline) order; other techniques like linear programming and
bipartite matching may also be used.

5

• there are two families h and l; and

• one family h has no setup time while the other family l has unit setup

time, i.e., sh = 0 and sl = 1.

Since sequence-independent setup times are a special case of sequence-dependent

setup times, (1 | rj , dj ,pmtn, sfg | −) is also NP-hard in the same restricted case.

Therefore, the two unclassified problems in Table 1 are resolved to be weakly

NP-hard.

To gain further appreciation for the importance of the above result, some

readers may find it useful to view it through the lens of parameterized complex-

ity. A problem with parameter k is considered to be fixed-parameter tractable

if it can be solved in O(f(k) · |x|c) time, where x is an input, |x| is its size,

f is some computable function, and c is some constant. All fixed-parameter

tractable problems lie in the (parameterized complexity) class FPT, which is

an analogue of the classical complexity class P. NP-hard problems like vertex

cover are known to be in FPT. Intractability of parameterized problems is

captured by a collection of complexity classes called the W-hierarchy which is

contained in the large class XP, an analogue of the classical complexity class

EXP:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

Problems like clique and dominating set occupy the lower levels of the W-

hierarchy, and are believed to be parametrically intractable. The class XP con-

tains any problem that can be solved by an algorithm in O(f(k) · |x|g(k)) time,

where x and k are the input and parameter respectively, and f and g are some

computable functions. The NP-hardness result in the previous paragraph im-

plies that such an algorithm cannot exist for (1 | rj , dj ,pmtn, sf | −) when

the parameter is chosen to be (F, S), unless P = NP, because F = 2 and

S = 1 in the restricted case considered in the result. Thus, assuming P ̸= NP,

(1 | rj , dj ,pmtn, sf | −), parameterized by (F, S), is not in XP, and is highly

intractable. While the results in this paper can be understood without the aid of

parameterized complexity, the discussion in this paragraph provides a different

6

and interesting vantage point for viewing the same results. Our introduction to

parameterized complexity classes has been brief, and the interested reader can

find more information in standard texts [9, 10].

Our second result is an O(n log n) time algorithm for (1 | dj ,pmtn, sf , F =

2 | −), which is a significant improvement over the O(n2) algorithm of Ghosh

and Gupta [6].

2. The Intractability Result

To prove NP-hardness of the problem (1 | rj , dj ,pmtn, sf , F = 2 | −), we

show that partition [11], a weakly NP-hard problem, is polynomial-time re-

ducible to the problem. We consider the following version of partition:

• Instance: A set of positive integers A = {a1, a2, . . . , am}.

• Question: Does there exist a subset A′ ⊆ A such that∑
a∈A′

a =
∑

a∈A\A′

a,

and |A′| = m/2?

We transform an instance of partition to an instance of our problem in which

there are two families h and l such that sh = 0 and sl = 1. Each ai is mapped to

an interval Ii of length Xi = ai+3M+7, where M = 1+
∑m

i=1 ai. The intervals

are placed next to each other in the order I1, I2, . . . , Im; thus, the right end of

the interval Ii equals the left end of the interval Ii+1 for all i ∈ {1, 2, . . . ,m−1}.

Any interval Ii contains four fixed unit jobs u1, u2, u3, and u4:

Job r p d f

u1 0 1 1 h

u2 M + 2 1 M + 3 h

u3 Xi −M − 3 1 Xi −M − 2 l

u4 Xi − 1 1 Xi l

7

Thus, u1 is a job in family h with release time 0, deadline 1, and unit execu-

tion time, and the other records may be read similarly. The release times and

deadlines are relative to the interval Ii: thus, if Ii begins at time t, then u3

has a release time at t + Xi − M − 3. Since the first job of any interval is in

family h and sh = 0, we can safely place the intervals right next to each other.

Ii contains two more jobs, v1 and v2:

Job r p d f

v1 2 M 2M + 4 l

v2 Xi − 2M − 4 M Xi − 2 h

Thus, v1 is a job in family l with release time 2, deadline 2M+4, and processing

time M , and the other record may be read similarly. The internal structure of

Ii is determined by the four fixed unit jobs, u1, u2, u3, and u4, and the two jobs,

v1 and v2 with larger spans. The following lemma may be verified by performing

some elementary algebra.

Lemma 1. The following equations hold for the jobs u1, u2, u3, u4, v1, and v2:

r(u2)− d(u1) = M + 1

r(v2)− d(u2) = ai

r(u3)− d(u2) = ai +M + 1

r(u3)− d(v1) = ai

r(u4)− d(u3) = M + 1

Three configurations of the interval Ii in which v1 and v2 are scheduled non-

preemptively are shown in Figure 1. The configuration shown in the top row is

labeled lhhl because the jobs u2, v1, v2, u3 scheduled in this order belong to the

families l, h, h, l respectively. While two more configurations, hllh and lhlh, are

shown in the figure, the configuration hlhl is missing: visually, it is clear that

the configuration is not valid since the interval [d(u2), r(u3)] is not long enough

to contain both v1 and v2. We can confirm this algebraically:

p(v1) + p(v2) = 2M > ai +M + 1 = r(u3)− d(u2).

8

r(
u 1

)

d
(u

1
)

r(
v 1

)

r(
u 2

)

d
(u

2
)

r(
v 2

)

d
(v

1
)

r(
u 3

)

d
(u

3
)

d
(v

2
)

r(
u 4

)

d
(u

4
)

lhlh

hllh

lhhl

u1 u2 u3 u4s v1 v2 s
ai + M + 1

u1 u2 u3 u4s v1 v2 s
M + 1 ai

u1 u2 u3 u4s v1 v2 s
ai M + 1

time

Figure 1: Three configurations of interval Ii are shown here. The colors indicate the family
of the jobs: red for h, blue for l, and grey for setup.

The first equality follows from the definitions of v1 and v2; the inequality follows

from the definition of M ; the second equality is taken from Lemma 1. Therefore,

the three configurations that are shown in Figure 1 are the only viable configu-

rations in which v1 and v2 are scheduled non-preemptively. Since preemption is

permitted in the problem, many valid configurations are not shown in the fig-

ure: once we complete our construction, we will be able to show that the three

configurations that are shown in Figure 1 are the only viable configurations for

any interval Ii.

The final ingredients in our construction are two big jobs, b1 and b2 that

span from the left end of the first interval I1 to the right end of the last interval

Im:

Job r p d f

b1 0
∑m

i=1(ai +M + 1)/2
∑m

i=1 Xi l

b2 0
∑m

i=1(ai +M + 1)/2
∑m

i=1 Xi h

Note that unlike the definitions of the previous jobs, the release times and

deadlines of b1 and b2 are in absolute coordinates. We need a few more auxiliary

lemmas before we can prove our main result.

Lemma 2. The total slack in our construction is 2m.

Proof. The total computational demand within each interval Ii is

4∑
i=1

p(ui) +

2∑
j=1

p(vj) = 4 + 2M.

9

The total computational demand from the big jobs, b1 and b2, is
∑m

i=1(ai+M+
1). Summing the two demands, we get a total demand of

m∑
i=1

(ai + 3M + 5) =

m∑
i=1

(Xi − 2) =

m∑
i=1

(Xi)− 2m.

Lemma 3. Each interval Ii contains at least two setups.

Proof. In any Ii, there are three subintervals that lie between the four fixed
jobs u1, u2, u3, and u4 (see Figure 1). There is at least one setup in the middle
subinterval since u2 and u3 belong to families h and l respectively. Assume, for
the sake of contradiction, that the left and right subintervals contain no setups.
Then, v1 and v2 must be scheduled in the middle subinterval. This implies that
Ii is in the hlhl configuration, but we argued earlier that this configuration is
invalid: thus, we have a contradiction.

Lemma 4. Each interval must be in configuration lhhl or in configuration hllh.

Proof. From Lemma 2 and Lemma 3, it follows that each interval Ii contains
exactly two setups. The arguments in the proof of Lemma 3 may be repeated
to show that one setup must be in the middle subinterval, and the other setup
must be in either the left subinterval or the right subinterval.

Assume that the left subinterval does not contain setups. Then, v1 must be
scheduled non-preemptively in the middle interval, separated from u2 by a setup.
Since the middle interval contains only one setup, there can be no setup between
d(v1) and r(u3), which implies that v2 must be scheduled non-preemptively in
the right subinterval. Therefore, we end up in configuration hllh.

Symmetrically, assuming that the right subinterval does not contain setups,
then we necessarily end up in configuration lhhl.

Lemma 5. A schedule exists for the jobs if and only if the partition instance
a1, a2, . . . , am has a solution.

Proof. From Lemma 4, we know that each interval Ii is in configuration lhhl
or in configuration hllh. To avoid introducing more setups in the configuration
lhhl, b1 must be scheduled between d(u3) and r(u4), and b2 must be scheduled
between d(u2) and r(v2). Thus, b1 and b2 execute for M + 1 and ai units of
time respectively in the configuration lhhl, using Lemma 1. Similarly, it can
be shown that b1 and b2 execute for ai and M + 1 units of time respectively in
the configuration hllh. Now, we are ready to prove the two directions in the
statement of the lemma.

(⇐=). For every ai ∈ A′, set the configuration of Ii to lhhl, and, for
all remaining intervals, choose the other configuration. For each ai ∈ A′, b1
executes for M +1 units of time in Ii. Since |A′| = m/2, b1 executes for a total
of (m/2)(M + 1) units of time in these intervals. For each ai /∈ A′, b1 executes
for ai units of time, yielding a total execution time of∑

a/∈A′

ai = (
∑
a∈A

ai)/2.

10

The equality holds because A′ is a solution to the partition instance. Over all
intervals, b1 executes for the following amount of time:

(m/2)(M + 1) + (
∑
a∈A

ai)/2

=
∑
a∈A

(ai +M + 1)/2

= p(b1).

Similarly, we can show that b2 executes for p(b2) units of time. Thus, we have
produced a feasible schedule.

(=⇒). Without loss of generality, we assume that intervals I1, I2, . . . , Ik
are in configuration lhhl and the remaining intervals are in configuration hllh;
this assumption can always be realized by renaming the intervals. Then, for
each i ∈ {1, 2, . . . , k}, b2 executes for ai units of time in the interval Ii, and for
each i ∈ {k+1, k+2, . . . ,m}, b2 executes for M +1 units of time. Since this is
a valid schedule, these execution times must sum to p(b2):

k∑
i=1

ai +

m∑
j=k+1

(M + 1) =

m∑
i=1

(ai +M + 1)/2 (1)

=⇒ |(m/2− k)(M + 1)| = |
m∑

i=k+1

ai/2−
k∑

i=1

ai/2|

=⇒ |(m/2− k)(M + 1)| <
m∑
i=1

ai (since ai are positive integers)

=⇒ |(m/2− k)(M + 1)| < M (2)

=⇒ k = m/2.

The last step uses the following reasoning: if k ̸= m/2, then the lhs in Inequal-
ity 2 would be a positive multiple of M + 1 and hence would exceed the rhs,
yielding a contradiction. Setting k = m/2 in Equation 1, we get

k∑
i=1

ai = (

m∑
i=1

ai)/2.

Therefore, A′ = {a1, a2, . . . , ak} is a valid solution for the partition instance.

Theorem 6. (1 | rj , dj ,pmtn, sf | −) is NP-hard even for the restricted case of
two families and one unit setup time.

Proof. The transformation of the partition instance to the (1 | rj , dj ,pmtn, sf |
−) instance can be carried out in polynomial time, and from Lemma 5, it follows
that the transformation is a valid reduction.

11

3. The Algorithmic Result

In an instance of (1 | dj ,pmtn, sf , F = 2 | −), we have n jobs partitioned into

two families h and l with setup times sh and sl respectively. Before describing

an O(n log n) algorithm for (1 | dj ,pmtn, sf , F = 2 | −), we need a few lemmas.

Lemma 7. There exists a schedule where the jobs within each family are sched-
uled according to the earliest deadline (ED)3 order.

Proof. This fact about scheduling with setup times can be proved using simple
exchange arguments that preserve feasibility [12, Th. 1].

Let the jobs in each family be labeled according to the ED order: thus, for

any i, j ∈ h, di ≤ dj if i < j (equal deadline ties are broken arbitrarily). Using

Lemma 7, there exists a schedule such that i precedes j in the schedule, denoted

i → j, if i < j. For any i, j such that i → j, di can be modified to reflect the

precedence constraint [5, Ch. 3, p. 2]:

di := min{di, dj − pj}.

For each family, the digraph representing the precedence relations is a chain.

The deadlines of all jobs may be updated systematically by updating the dead-

line of the last sink vertex on the chain, deleting the said vertex, and continuing

the process. This takes O(n) time, and sorting the jobs in ED order takes

O(n log n) time: thus, the updates take O(n log n) time.

Any schedule is made up of blocks where jobs of one family execute within a

block. We refer to a block in which jobs from family h (l, resp.) are scheduled

as an h-block (l-block, resp.). If an h-block follows an l-block in a schedule,

then there must be a gap of sh units between the two blocks; we refer to this

portion of the schedule as an lh-transition. Similarly, an hl-transition denotes

an l-block following an h-block with a gap of sl units in between.

Lemma 8. There exists a schedule where at least one job completes in each
block.

3This is also called the earliest due date (EDD) order, or the earliest deadline first (EDF)
order by various authors.

12

Proof. Consider an h-block in which some jobs are scheduled but none of them
complete. Let us assume that jobs j1, j2, . . . , jm are scheduled in the block
from left to right, for some m > 0. Let the sub-block corresponding to jm
extend over the interval [t1, t2]. Since jm does not complete in the block, it
must resume execution at some time t3 such that t3 > t2. We claim that the
partial schedules over the intervals [t1, t2] and [t2, t3] may be safely exchanged
with each other without violating setup constraints or affecting feasibility. By
repeatedly performing such exchanges for m− 1,m− 2, . . . , 1, we can eliminate
the h-block from the schedule.

Lemma 9. There exists a schedule such that for any fg-transition where f, g ∈
{l, h}, one of the following conditions is true:

(i) all jobs in f have been completed at the end of the f -block; or

(ii) the first job scheduled in the g-block completes at its deadline.

Proof. Without loss of generality, we may restrict our attention to schedules
where all jobs within a family are scheduled in ED order (using Lemma 7) and
at least one job completes in each block (using Lemma 8). Consider the first
fg-transition in a schedule where both conditions (i) and (ii) are false. Thus, at
the end of the f -block there exists a job i (with the earliest deadline) in f that
has not been completed, and the first job j in the g-block completes before its
deadline. Let ε be defined as follows:

ε = min{dj − Cj , p
∗
i },

where Cj is the completion time of j and p∗i is the remaining processing time of
i. From the deadline modifications that we made earlier, it follows that we can
shift the g-block ε units to the right; we can schedule ε units of i in the space
created by the shift. If one of the conditions in the statement of the lemma
is true after this exchange, then we are done; otherwise, we can repeat the
process. Since each iteration of the process increases the number of completed
jobs in f , the repetitions cannot be carried out indefinitely. Therefore, one of
the conditions will eventually be true.

A simple scheduling algorithm follows from Lemma 9: keep scheduling jobs

from family f until time dj−p∗j−sg where j is the job in family g with the earliest

deadline and with nonzero remaining processing time p∗j . This consumes O(n)

time. It is not clear whether the first block in the schedule should be an h-block

or an l-block: we can run the algorithm for both choices. The modification of

the deadlines takes O(n log n) time, and it dominates the running time of the

algorithm.

Theorem 10. The algorithm described in this section solves (1 | dj ,pmtn, sf , F =
2 | −) in O(n log n) time.

13

4. Conclusion & Future Directions

We have shown that the problem (1 | rj , dj ,pmtn, sf | −) is not fixed-

parameter tractable when parameterized by (F, S), unless P = NP. However,

we still need to find acceptable solutions for practical applications. Questions

in the vein of the following question need to be investigated:

Q1: Are there other choices of parameters for the problem (1 | rj , dj ,pmtn,

sf | −) that lead to tractability, e.g., the number of distinct release times?

Some such parameters have been investigated for hard scheduling prob-

lems [13].

Our algorithmic result shows that unlike (1 | rj , dj ,pmtn, sf , F = 2 | −), the

problem (1 | dj ,pmtn, sf , F = 2 | −) is tractable (in P). Ghosh and Gupta’s

algorithm [6] shows that (1 | dj ,pmtn, sf | −) parameterized by F is in XP.

These facts suggest the following open question:

Q2: Is (1 | dj ,pmtn, sf | −) parameterized by F in FPT?

5. Acknowledgments

We thank the reviewers for their feedback which has helped in clearly pre-

senting the results. This work was supported in part by the National Science

Foundation (NSF), United States of America (grant number CPS-1911460).

References

[1] D. A. Osvik, A. Shamir, E. Tromer, Cache Attacks and Countermeasures:

The Case of AES, in: D. Pointcheval (Ed.), Topics in Cryptology – CT-RSA

2006, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,

2006, pp. 1–20. doi:10.1007/11605805_1.

[2] S. Mohan, M. K. Yoon, R. Pellizzoni, R. Bobba, Real-Time Systems Secu-

rity through Scheduler Constraints, in: 2014 26th Euromicro Conference

on Real-Time Systems, 2014, pp. 129–140. doi:10.1109/ECRTS.2014.28.

14

http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1109/ECRTS.2014.28

[3] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, P. McDaniel, A logical speci-

fication and analysis for SELinux MLS policy, ACM Transactions on In-

formation and System Security 13 (3) (2010) 26:1–26:31. doi:10.1145/

1805974.1805982.

[4] M. Xu, L. Thi, X. Phan, H.-Y. Choi, I. Lee, vCAT: Dynamic Cache Man-

agement Using CAT Virtualization, in: 2017 IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), 2017, pp. 211–222.

doi:10.1109/RTAS.2017.15.

[5] J. K. Lenstra, D. B. Shmoys, Elements of Scheduling, arXiv:2001.06005

[cs]arXiv:2001.06005.

[6] J. B. Ghosh, J. N. Gupta, Batch scheduling to minimize maximum late-

ness, Operations Research Letters 21 (2) (1997) 77–80. doi:10.1016/

S0167-6377(97)00028-X.

[7] J. Bruno, P. Downey, Complexity of Task Sequencing with Deadlines, Set-

Up Times and Changeover Costs, SIAM Journal on Computing 7 (4) (1978)

393–404. doi:10.1137/0207031.

[8] M. R. Garey, D. S. Johnson, Two-Processor Scheduling with Start-Times

and Deadlines, SIAM Journal on Computing 6 (3) (1977) 416–426. doi:

10.1137/0206029.

[9] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer Pub-

lishing Company, Incorporated, 2012.

[10] J. Flum, M. Grohe, Parameterized Complexity Theory (Texts in Theoreti-

cal Computer Science. An EATCS Series), Springer-Verlag, Berlin, Heidel-

berg, 2006.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., USA, 1990.

15

http://dx.doi.org/10.1145/1805974.1805982
http://dx.doi.org/10.1145/1805974.1805982
http://dx.doi.org/10.1109/RTAS.2017.15
http://arxiv.org/abs/2001.06005
http://dx.doi.org/10.1016/S0167-6377(97)00028-X
http://dx.doi.org/10.1016/S0167-6377(97)00028-X
http://dx.doi.org/10.1137/0207031
http://dx.doi.org/10.1137/0206029
http://dx.doi.org/10.1137/0206029

[12] C. L. Monma, C. N. Potts, On the Complexity of Scheduling with Batch

Setup Times, Operations Research 37 (5) (1989) 798–804. doi:10.1287/

opre.37.5.798.

[13] M. Mnich, A. Wiese, Scheduling and fixed-parameter tractability, Math-

ematical Programming: Series A and B 154 (1-2) (2015) 533–562. doi:

10.1007/s10107-014-0830-9.

16

http://dx.doi.org/10.1287/opre.37.5.798
http://dx.doi.org/10.1287/opre.37.5.798
http://dx.doi.org/10.1007/s10107-014-0830-9
http://dx.doi.org/10.1007/s10107-014-0830-9

	Introduction
	Notation
	Previous Work
	Our Results

	The Intractability Result
	The Algorithmic Result
	Conclusion & Future Directions
	Acknowledgments

