
Dimensions of fixed-priority aperiodic servers
Abhishek Singh

abhishek.s@wustl.edu

Washington University in St. Louis

St. Louis, Missouri, U.S.A.

Sanjoy Baruah

baruah@wustl.edu

Washington University in St. Louis

St. Louis, Missouri, U.S.A.

ABSTRACT

We identify the budget and the utilization of an aperiodic server as

vital attributes that affect its performance. Based on this observation,

we formulate an optimization problem in which we are given a

minimum budget for multiple servers running at the same priority,

and the objective is to find the dimensions (budgets and periods) of

these servers to maximize their cumulative utilization. We propose

a linear-time algorithm for solving the problem if priorities are rate-

monotonic, periods are harmonic, and deadlines are equal to periods.

We also propose mixed-integer nonlinear programs for the general

problem when these simplifying assumptions are lifted. Finally, we

discuss issues arising when implementing multiple servers at the

same priority, and we show how to modify the specifications of

servers to address these issues.

CCS CONCEPTS

• Computer systems organization → Real-time operating

systems; Embedded software.

KEYWORDS

aperiodic servers, fixed priority, harmonic, algorithm design, opti-

mization, MINLP

ACM Reference Format:

Abhishek Singh and Sanjoy Baruah. 2023. Dimensions of fixed-priority

aperiodic servers. In The 31st International Conference on Real-Time Networks

and Systems (RTNS 2023), June 07–08, 2023, Dortmund, Germany. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3575757.3593639

1 INTRODUCTION

Safety-critical systems can often be modeled as a collection of

preemptible priority-driven
1
hard real-time tasks (HRT tasks) and

aperiodic tasks, where the HRT tasks are recurrent and have strict

timing requirements, and the aperiodic tasks are isolated and have

loose timing requirements. For such hybrid collections, an aperiodic

server is often used to serve aperiodic tasks at a high priority while

simulating the timing behavior of one or more artificial HRT tasks

at that priority. The use of aperiodic servers results in smaller re-

sponse times for the aperiodic tasks; moreover, traditional real-time

1
In preemptive priority-driven systems, at any instant, a pending task with the highest

priority amongst all pending tasks is picked to run on the processor.

This work is licensed under a Creative Commons Attribution-NoDerivs International

4.0 License.

RTNS 2023, June 07–08, 2023, Dortmund, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9983-8/23/06.

https://doi.org/10.1145/3575757.3593639

scheduling theory can be used to analyze the system since it effec-

tively contains only HRT tasks (after aperiodic tasks are replaced

by artificial HRT tasks). The parameters of the artificial HRT tasks,

which are called the dimensions of the aperiodic server, are chosen

so that the original HRT tasks meet their timing requirements and

the response times of the aperiodic tasks are reduced; the prob-

lem of choosing dimensions to meet the above objectives is called

dimensioning the server.

We want to dimension servers when the original HRT tasks have

fixed priorities (tasks are assigned priorities that remain constant for

all behaviors) and constrained deadlines (for each task, its deadline is

at most its period; see Section 1.1 for terminology), are preemptible,

and run on a uniprocessor; we refer to fixed-priority constrained-

deadline preemptive uniprocessor systems as simply FP systems. The

theory for the timing analysis of FP systems is rooted in ideas like

the critical instant and response time analysis (RTA) [2, 3, 14, 17];

Section 2 explains the elements of the theory that we utilize in

this work. This theory underpins a rich framework for the design,

implementation, and analysis of safety-critical real-time systems

that has won widespread acceptance in industrial practice [11, 12,

22]; for instance, support for this framework is included in the IEEE

POSIX standard application program interface (API) for operating

system services [1].

We refer to servers for FP systems as FP servers. Notable FP

servers include the polling server, the sporadic server, the deferrable

server, and the priority exchange server [15, 23, 26]. The deferrable

server and the sporadic server are arguably the more well-studied

servers [7, 8, 24] because both servers are bandwidth-preserving

and have performed similarly in empirical evaluations [4]. Although

the initial motivation for FP servers was enhancing aperiodic re-

sponsiveness in systems containing HRT and aperiodic tasks, FP

servers have also been used in other contexts such as resource

reservations for multimedia applications [19, 20] and hierarchical

scheduling in open environments [8, 9, 13, 16, 18, 21]. Our aim is

to dimension FP servers in the original context, i.e., to enhance

aperiodic responsiveness. Before describing the existing work on

dimensioning servers, its limitations, and our proposed approach,

we must introduce some properties of FP servers.

1.1 FP systems and servers: model and terms

Our system contains sporadic tasks, which are a type of HRT tasks,

and aperiodic tasks. The HRT subsystem, which is an FP system, is

represented as a list

Γ = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑛⟩,

where 𝜏𝑖 is a sporadic task, and the tasks are listed in decreasing

order of priority.
2 𝜏𝑖 receives at most one request in any interval of

2
We assume that ⟨𝑒1, . . . , 𝑒𝑛 ⟩ is a list of 𝑛 elements; ⟨⟩ is an empty list; and 𝑙1 ◦ 𝑙2 is
the concatenation of lists 𝑙1 and 𝑙2 .

https://orcid.org/0000-0002-9312-0081
https://orcid.org/0000-0002-4541-3445
https://doi.org/10.1145/3575757.3593639
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3575757.3593639

RTNS 2023, June 07–08, 2023, Dortmund, Germany Singh and Baruah

length 𝑇𝑖 (𝑇𝑖 is the period of 𝜏𝑖); 𝜏𝑖 must complete the response to

the request within 𝐷𝑖 units of time (𝐷𝑖 is the relative deadline of 𝜏𝑖);

the execution of any single response for 𝜏𝑖 takes at most𝐶𝑖 units of

time on the processor (𝐶𝑖 is called the wcet (worst-case execution

time) of 𝜏𝑖). Thus, 𝜏𝑖 may be represented as the triple (𝐶𝑖 ,𝑇𝑖 , 𝐷𝑖), or
the pair (𝐶𝑖 ,𝑇𝑖) if the deadline is equal to the period. If 𝜏𝑖 does not

miss its deadlines in any behavior of the system, then we say that

𝜏𝑖 is schedulable in the system. If 𝜏𝑖 is schedulable for all 𝑖 ∈ [𝑛]3,
then we say that the system is schedulable.

For any 𝑖 ∈ [𝑛], we use Γ𝑖 (resp., Γ𝑛−Γ𝑖) to refer to the high (resp.,
low) subsystem containing tasks ⟨𝜏1, 𝜏2, . . . , 𝜏𝑖 ⟩ (resp., ⟨𝜏𝑖+1, 𝜏𝑖+2,
. . . , 𝜏𝑛⟩). The FP server serves the aperiodic tasks at a high priority

𝑘 to reduce their response times.We assume that𝑘 ∈ [𝑛+1], all tasks
in the FP subsystem Γ𝑘−1 have a higher priority than the server,

and all tasks in the FP subsystem Γ𝑛 − Γ𝑘−1 have lower priority

than the server. Recall that one of the objectives of the server is

to ensure that the system is schedulable; we refer to a server that

meets this objective as a feasible server. The schedulability of the

FP subsystem Γ𝑘−1 is unaffected by the server because it has higher
priority than the server and the server cannot interfere with its

timing behavior. The schedulability of the FP subsystem Γ𝑛 − Γ𝑘−1,
on the other hand, is affected by the server. Thus, the feasibility of a

server is equivalent to the schedulability of the lower FP subsystem

Γ𝑛 − Γ𝑘−1.
The server has a (execution-time) budget

4 𝐵 and a period 𝑃 . The

server (𝑘, 𝐵, 𝑃) simulates the timing behavior of𝑚 sporadic tasks,

denoted 𝜅1, . . . , 𝜅𝑚 . The𝑚 tasks have priority 𝑘 , cumulative wcet

𝐵, period 𝑃 , and (implicit) deadline 𝑃 . For instance, the sporadic

server (𝑘, 𝐵, 𝑃) simulates the timing behavior of 𝐵 sporadic tasks

with wcet 1 and period 𝑃 , and the polling server (𝑘, 𝐵, 𝑃) simulates

the timing behavior of 1 sporadic task with wcet 𝐵 and period 𝑃 .

Internally, the server does a lot of bookkeeping to ensure that the

simulation is valid; for instance, the server keeps track of howmuch

budget has been consumed by aperiodic tasks, it ensures that the

aperiodic tasks do not consume more budget than what is available,

and it decides when the budget should be replenished next. The

consumption and replenishment rules vary between servers de-

pending on the collection of tasks they aim to simulate (we discuss

the rules for sporadic servers in Section 6).

Externally, from the perspective of the FP scheduler, the server

appears to be a collection of sporadic tasks with the same priority

and is indistinguishable from the true sporadic tasks in Γ. Thus,
we must choose the parameters of 𝜅1, . . . , 𝜅𝑚 so that the following

system is schedulable:

Γ𝑘−1 ◦ ⟨𝜅1, . . . , 𝜅𝑚⟩ ◦ (Γ𝑛 − Γ𝑘−1)

Application of elementary results from FP scheduling theory allows

the system to be simplified to

Γ𝑘−1 ◦ ⟨(𝐵, 𝑃)⟩ ◦ (Γ𝑛 − Γ𝑘−1) .

As mentioned before, Γ𝑘−1 is not affected by the server, and we can

focus on the subsystem Γ𝑛 − Γ𝑘−1. The next theorem follows from

these observations.

3
We assume that [𝑛] denotes the set {1, 2, . . . , 𝑛} and [0] = ∅.

4
The term capacity is also used to refer to the budget by some authors.

Theorem 1.1. Let Γ be an FP system. The server (𝑘, 𝐵, 𝑃) is feasible
if and only if Γ𝑛 − Γ𝑘−1 is schedulable in the larger system

Γ𝑘−1 ◦ ⟨(𝐵, 𝑃)⟩ ◦ (Γ𝑛 − Γ𝑘−1) .

It can be argued that the server task should also be schedulable

to provide quality-of-service guarantees to the aperiodic tasks; we

choose to work with a definition of feasibility that is only tied to the

schedulability of the true HRT tasks. The description of FP servers

in the above paragraph is a valid abstraction of the polling server,

the sporadic server, and the priority-exchange server but it is not

true for the deferrable server, which simulates a self-suspending

task. Thus, our results are applicable to polling server, the sporadic

server, the priority-exchange server, and any other server which

matches the above description.

1.2 Previous work on dimensioning FP servers

Dimensioning the server involves selecting feasible dimensions

𝑘, 𝐵, 𝑃 that reduce response times of aperiodic tasks as much as

possible. In the early stages of research on FP servers, dimensions

were chosen rather simply: rate-monotonic priority assignment
5

was assumed, 𝑘 was chosen to be equal to the highest priority,

i.e., 𝑘 = 1, 𝑃 was chosen to be equal to the smallest period 𝑇1,

and 𝐵 was chosen to equal its maximum feasible value since 𝑘

and 𝑃 were fixed [15, 23]. A few years later, researchers observed

that sometimes choosing a smaller period than 𝑇1 can result in a

server with larger utilization [26]; the ratio 𝐵/𝑃 , which is called the

utilization or bandwidth of the server, is a measure of the rate at

which the server processes aperiodic requests. More details about

the limitations in these works may be found in the research of

Bernat and Burns [4, Secs. 3.2, 5]. Bernat and Burns investigated the

efficacy of sophisticated dimensioning schemes for sporadic and

deferrable servers by carrying out simulations on a large number of

synthetic task systems, and concluded that aperiodic responsiveness

is enhanced by ensuring that the server has a high priority, a large

budget and a large utilization [4, Sec. 4.4].

The intuition for the above recommendations can be explained

by considering two types of scenarios. An FP server shines in sce-

narios where an aperiodic task arrives and is served immediately

because the server has a high priority and a large enough budget

to accommodate the task’s execution time; a larger budget means

that it can serve aperiodic tasks with larger execution times im-

mediately without waiting for replenishment. In scenarios where

aperiodic tasks keep arriving and the server is continuously busy,

a larger utilization restricts the backlog of pending aperiodic work

to smaller values. Bernat and Burns propose a heuristic for dimen-

sioning servers so that a large budget and a large utilization are

achieved [4, Sec. 4.4]:

The best performance can be generally achieved by

selecting the capacity [budget] that corresponds to

the local maxima of 𝑈𝑠 (𝑐) [utilization as a function

of budget] closer to the maximum possible capacity

[budget].

It is evident that the above heuristic is biased towards achieving

the largest budget or at least getting close to it (we will address this

5
Rate-monotonic priority assignment is a type of fixed priority assignment in which

tasks with smaller periods have higher priorities.

Dimensions of fixed-priority aperiodic servers RTNS 2023, June 07–08, 2023, Dortmund, Germany

limitation, amongst other limitations, in the next subsection). We

do not know of any other work where FP servers are dimensioned

with the objectives of maximizing the budget and the utilization.

1.3 Some observations and the problem

statement

A larger utilization can often be assigned to a server by using a

smaller period, while a larger budget can often be assigned to a

server by using a larger period. For instance, if we try to insert a

server at the highest priority (𝑘 = 1) into the system ⟨(1, 5), (3, 10)⟩,
then we discover that

(i) The maximum budget is 4, and the maximum utilization for

this budget is 4/9 ≈ 0.44, using the server (4, 9).
(ii) The maximum utilization is 0.5, and the maximum budget

for this utilization is 2.5, using the server (2.5, 5).
Thus, the two objectives of maximizing the budget and maximizing

the bandwidth of the server are at odds with each other. Details

about how to compute the above servers are provided in Section 3.

In the above example, we can add two servers (1, 5) and (3, 10) at
the highest priority so that they serve aperiodic requests in concert

with each other. After the addition, the full system is given by

⟨(1, 5), (3, 10), (1, 5), (3, 10)⟩; the upper half of the system contains

the artificial tasks that are simulated by the server, and the lower

half of the system contains the original sporadic tasks. It may be

verified that the full system is schedulable and hence the parameters

for the two servers are feasible. Collectively, the two servers have

budget 4 and utilization 0.5, and hence they are a better choice than

both servers (4, 9) and (2.5, 5). Thus, to improve our chances of

getting larger budget and utilization values, we should consider

using multiple servers at the same priority.

In this research, we ask the following question:

Given an FP system Γ, what is the maximum cumula-

tive utilization for a finite collection of servers that is

feasible at priority 𝑘 and has a minimum cumulative

budget 𝐵min?

Let the collection of servers simulate the following collection of

sporadic tasks:

⟨(𝑏1, 𝑝1), (𝑏2, 𝑝2), . . . , (𝑏𝑚, 𝑝𝑚)⟩

All𝑚 servers run at the same priority 𝑘 but a concrete implementa-

tion of such a collection of servers may decide to give preference to

one server over another when both servers have available budget

and an aperiodic task is pending. In our problem, the objective is

to find 𝑏1, 𝑝1, . . . , 𝑏𝑚, 𝑝𝑚 , where𝑚 is arbitrary, that maximize∑︁
𝑗∈[𝑚]

𝑏 𝑗/𝑝 𝑗

subject to the following constraints:

(i)

∑
𝑗∈[𝑚] 𝑏 𝑗 ≥ 𝐵min,

(ii)

∑
𝑗∈[𝑚] 𝑏 𝑗 ≤ 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑚 , and

(iii) the collection of servers (𝑘, 𝑏1, 𝑝1), (𝑘,𝑏2, 𝑝2), . . . , (𝑘,𝑏𝑚, 𝑝𝑚)
are feasible.

The first constraint says that the cumulative budget is at least 𝐵min;

the second constraint imposes a linear order on the periods without

loss of generality, and its says that the smallest period 𝑝1 is at least

𝐵min.
6
Using Theorem 1.1, the third constraint is equivalent to the

schedulability of the subsystem Γ𝑛 − Γ𝑘−1 in the larger system

Γ𝑘−1 ◦ ⟨(𝑏1, 𝑝1), (𝑏2, 𝑝2), . . . , (𝑏𝑚, 𝑝𝑚)⟩ ◦ (Γ𝑛 − Γ𝑘−1).

We call this problem Dimensioning. An instance of Dimensioning

is given by the triple (Γ𝑛, 𝐵min, 𝑘).
If a system designer wants to maximize the utilization for a

given set of priorities 𝐾 and a minimum budget 𝐵min, then they

can explore the space of feasible server parameters by solving the

Dimensioning instances in {(Γ, 𝐵min, 𝑘) | 𝑘 ∈ 𝐾}. The optimal

utilization values for the instances will help the designer to select

the server parameters 𝑘,𝑏1, 𝑝1, . . . , 𝑏𝑚, 𝑝𝑚 that best suit their needs.

2 MORE BACKGROUND & ASSUMPTIONS

We assume that 𝑇𝑖 , 𝐷𝑖 , and 𝐶𝑖 are rational values. The ratio 𝑈𝑖 =

𝐶𝑖/𝑇𝑖 is called the utilization of 𝜏𝑖 . rbf𝑖 , the request-bound function

of subsystem Γ𝑖 , is defined as follows:

rbf𝑖 (𝑡) =
∑︁
𝑗∈[𝑖]

⌈
𝑡

𝑇𝑗

⌉
𝐶 𝑗 (1)

rbf𝑖 (𝑡) is the maximum cumulative execution requirement of the

tasks in Γ𝑖 corresponding to requests that arrive in any interval of

length 𝑡7.

Theorem 2.1 ([10, 14]). If Γ is a preemptive constrained-deadline

fixed-priority uniprocessor system, then Γ is schedulable if and only

if for all 𝑖 ∈ [𝑛]
∃𝑡 ∈ (0, 𝐷𝑖] : rbf𝑖 (𝑡) ≤ 𝑡 . (2)

Response time analysis (RTA) [10] solves the problem

min{𝑡 ∈ (0, 𝐷𝑖] | rbf𝑖 (𝑡) ≤ 𝑡} (3)

by using a fixed-point iteration approach. RTA starts with an ini-

tial value, 𝑡 , a lower bound for the optimal 𝑡 , and then it updates

𝑡 to rbf𝑖 (𝑡) repeatedly until 𝑡 stabilizes or 𝑡 > 𝐷𝑖 . The number

of iterations is at most 𝐷𝑖/min𝑗∈[𝑖−1] 𝑇𝑖 , and the algorithm has

pseudo-polynomial running time. Of course, Γ is schedulable if and

only if RTA finds feasible solutions for Problem (3) for all 𝑖 ∈ [𝑛].
The next corollary follows directly from Theorem 1.1 and Theo-

rem 2.1.

Corollary 2.2. The collection of𝑚 servers at priority 𝑘 is feasible

if and only if for all 𝑖 ∈ [𝑛] \ [𝑘 − 1],

∃𝑡 ∈ (0, 𝐷𝑖] : rbf𝑖 (𝑡) +
∑︁

𝑗∈[𝑚]

⌈
𝑡

𝑝 𝑗

⌉
𝑏 𝑗 ≤ 𝑡 .

3 MAXIMIZE BUDGET AND UTILIZATION

SEPARATELY

Before we attempt to solve Dimensioning, we need to be able to

find the maximum cumulative budget and the maximum cumulative

utilization of the collection of servers separately.

6
If 𝑝1 < 𝐵min then the servers can serve a task with execution requirement strictly

greater than

∑
𝑗 𝑏 𝑗 immediately in some scenarios; we ignore this complication by

assuming that 𝑝1 ≥ 𝐵min .

7
Usually rbf is defined with respect to a task in Γ (see, for instance, [25, Sec. 3.3.3])

but it is more efficient for us to define it with respect to a subsystem of Γ.

RTNS 2023, June 07–08, 2023, Dortmund, Germany Singh and Baruah

Corollary 3.1. Given Γ and 𝑘 , let 𝐵max denote the maximum

cumulative budget for any feasible collection of servers at priority 𝑘 .

Then, we must have

𝐵max = min

𝑖∈[𝑛]\[𝑘−1]

{
max

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)}

}
.

Proof. Since the servers are feasible, using Corollary 2.2, we

must have

∀𝑖 ∈ [𝑛] \ [𝑘 − 1] : ∃𝑡 ∈ (0, 𝐷𝑖] :
∑︁

𝑗∈[𝑚]

⌈
𝑡

𝑝 𝑗

⌉
𝑏 𝑗 ≤ 𝑡 − rbf𝑖 (𝑡)

Since the objective is to maximize

∑
𝑗 𝑏 𝑗 , we can eliminate 𝑝 𝑗 from

the above condition by choosing 𝑝 𝑗 = max𝑖∈[𝑛]\[𝑘−1] 𝐷𝑖 because

this minimizes the coefficient of 𝑏 𝑗 . Then, the above condition

simplifies to

∀𝑖 ∈ [𝑛] \ [𝑘 − 1] : ∃𝑡 ∈ (0, 𝐷𝑖] :
∑︁

𝑗∈[𝑚]
𝑏 𝑗 ≤ 𝑡 − rbf𝑖 (𝑡)

The expression in the statement of the corollary is the tightest

upper bound for

∑
𝑗∈[𝑚] 𝑏 𝑗 in this condition. □

Corollary 3.2. Given Γ and 𝑘 , let 𝑈max denote the maximum

cumulative utilization for any feasible collection of servers at priority

𝑘 . Then, we must have

𝑈max = min

𝑖∈[𝑛]\[𝑘−1]

{
max

𝑡 ∈ (0,𝐷𝑖]

{
1 − rbf𝑖 (𝑡)

𝑡

}}
.

Proof. Since the servers are feasible, using Corollary 2.2, we

must have

∀𝑖 ∈ [𝑛] \ [𝑘 − 1] : ∃𝑡 ∈ (0, 𝐷𝑖] :
∑︁

𝑗∈[𝑚]

⌈
𝑡

𝑝 𝑗

⌉
𝑝 𝑗𝑈 𝑗 ≤ 𝑡 − rbf𝑖 (𝑡)

Let us assume that an optimal solution exists where 𝑡𝑖 ∈ (0, 𝐷𝑖] ∩Q
satisfies the above inequality for each 𝑖 . Since the objective is to

maximize

∑
𝑗 𝑈 𝑗 , we can eliminate 𝑝 𝑗 from the above condition

by choosing 𝑝 𝑗 = gcd𝑖∈[𝑛]\[𝑘−1] 𝑡𝑖 because this minimizes the

coefficient of𝑈 𝑗 . Then, the above condition simplifies to

∀𝑖 ∈ [𝑛] \ [𝑘 − 1] : ∃𝑡 ∈ (0, 𝐷𝑖] :
∑︁

𝑗∈[𝑚]
𝑈 𝑗 ≤ 1 − rbf𝑖 (𝑡)

𝑡

The expression in the statement of the corollary is the tightest

upper bound for

∑
𝑗∈[𝑚] 𝑏 𝑗 in this condition.

The global maximum point of 1− rbf𝑖 (𝑡)
𝑡 must be𝐷𝑖 or a multiple

of a period 𝑇𝑗 with 𝑗 ∈ [𝑖], which are all rational values; thus, our

assumption that there exist optimal solutions with rational 𝑡𝑖 ’s is

justified. □

From the above proofs, it is evident that a server with a large pe-

riod such as max𝑖∈[𝑛]\[𝑘−1] 𝐷𝑖 can have budget 𝐵max and a server

with a small period gcd{𝑇1, 𝐷1, . . . ,𝑇𝑛, 𝐷𝑛} can have utilization

𝑈max. Better periods can be chosen for these solitary servers by

analyzing the functions 𝑡 ↦→ 𝑡 − rbf𝑖 (𝑡) and 𝑡 ↦→ 1 − rbf𝑖 (𝑡)/𝑡 in a

little more detail. For any 𝑖 ∈ [𝑛] \ [𝑘 − 1], let 𝛽𝑖 and 𝜇𝑖 be defined
as follows:

𝛽𝑖 = argmax

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)} (4)

𝜇𝑖 = argmax

𝑡 ∈ (0,𝐷𝑖]

{
1 − rbf𝑖 (𝑡)

𝑡

}
(5)

If multiple global maximum points are available, then we let 𝛽𝑖
(resp., 𝜇𝑖) denote the smallest global maximum point in the inter-

val, thus ensuring that 𝛽𝑖 and 𝜇𝑖 are well-defined. The following

theorem follows from these definitions:

Theorem 3.3. Given Γ and 𝑘 , a server with budget 𝐵max and

period max𝑖∈[𝑛]\[𝑘−1] 𝛽𝑖 is feasible; and a server with utilization

𝑈max and period gcd𝑖∈[𝑛]\[𝑘−1] 𝜇𝑖 is feasible.

In the remainder of the section, we discuss algorithms for com-

puting 𝛽𝑖 , 𝜇𝑖 , 𝐵max, and𝑈max.

Theorem 3.4. Algorithm 1 computes(
max

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)} , 𝛽𝑖

)
.

Proof Sketch. The correctness of the algorithm follows from

three observations:

(i) RTA can be used to solve min{𝑡 ∈ (0, 𝐷𝑖] | 𝑚 + rbf𝑖 (𝑡) ≤ 𝑡}
for a fixed𝑚 since the change is equivalent to modifying 𝐶𝑖
to 𝐶𝑖 +𝑚.

(ii) The set

{𝑧 ∈ (0, 𝐷𝑖] | ∃𝑡 ∈ (0, 𝐷𝑖] : 𝑧 + rbf𝑖 (𝑡) ≤ 𝑡}

is a down-set
8
, and, hence, binary search can be used to find

the largest value in the set. Thus, we must have

𝑥 = max

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)} (6)

(iii) The 𝑧 returned by the algorithm equals min{𝑡 ∈ (0, 𝐷𝑖] |
𝑥 + rbf𝑖 (𝑡) ≤ 𝑡}. Thus, we must have

𝑧 − rbf𝑖 (𝑧) = 𝑥
=⇒ 𝑧 − rbf𝑖 (𝑧) = max

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)} (using Equation (6))

=⇒ 𝑧 = argmax

𝑡 ∈ (0,𝐷𝑖]
{𝑡 − rbf𝑖 (𝑡)}

=⇒ 𝑧 = 𝛽𝑖 (using Definition (4))

□

Algorithm 2 is similar to Algorithm 1, and the next theorem can

be proved using the same strategy as the above proof.

Theorem 3.5. Algorithm 2 computes(
max

𝑡 ∈ (0,𝐷𝑖]

{
1 − rbf𝑖 (𝑡)

𝑡

}
, 𝜇𝑖

)
Algorithm 1 (resp., Algorithm 2) can be called for all 𝑖 ∈ [𝑛] \

[𝑘 − 1], and the minimum value amongst all values returned by the

algorithm is 𝐵max (resp.,𝑈max).

4 A TRACTABLE SPECIAL CASE OF

DIMENSIONING

In this section, we solve Dimensioning in a restricted setting:

(i) The scheduler assigns rate-monotonic priorities to Γ𝑛 , i.e.,

∀𝑖, 𝑗 ∈ [𝑛] : 𝑖 ≤ 𝑗 =⇒ 𝑇𝑖 ≤ 𝑇𝑗 . (7)

8
For an order 𝑃 , a subset𝐴 ⊆ 𝑃 is a down-set if 𝑥 ∈ 𝐴 and 𝑦 ≤ 𝑥 imply that 𝑦 ∈ 𝐴.
We are implicitly working in the order (Q, ≤) whenever we use the term down-set.

Dimensions of fixed-priority aperiodic servers RTNS 2023, June 07–08, 2023, Dortmund, Germany

Algorithm 1 Compute

(
max𝑡 ∈ (0,𝐷𝑖] {𝑡 − rbf𝑖 (𝑡)} , 𝛽𝑖

)
.

1: (𝑥,𝑦, 𝑧) ← (0, 𝐷𝑖 , 0)
2: repeat

3: 𝑚 ← (𝑥 + 𝑦)/2
4: Use RTA to solve min{𝑡 ∈ (0, 𝐷𝑖] | 𝑚 + rbf𝑖 (𝑡) ≤ 𝑡}.
5: if an optimal solution exists then

6: 𝑥 ←𝑚

7: 𝑧 ← the optimal value

8: else

9: 𝑦 ←𝑚

10: end if

11: until 𝑥 ≈ 𝑦
12: return (𝑥, 𝑧)

Algorithm 2 Compute

(
max𝑡 ∈ (0,𝐷𝑖]

{
1 − rbf𝑖 (𝑡)

𝑡

}
, 𝜇𝑖

)
.

1: (𝑥,𝑦, 𝑧) ← (0, 1, 0)
2: repeat

3: 𝑚 ← (𝑥 + 𝑦)/2
4: Use RTA to solve min{𝑡 ∈ (0, 𝐷𝑖] | rbf𝑖 (𝑡) ≤ (1 −𝑚)𝑡}.
5: if an optimal solution exists then

6: 𝑥 ←𝑚

7: 𝑧 ← the optimal value

8: else

9: 𝑦 ←𝑚

10: end if

11: until 𝑥 ≈ 𝑦
12: return (𝑥, 𝑧)

(ii) The periods in Γ𝑛 are harmonic, i.e.,

∀𝑖, 𝑗 ∈ [𝑛] : 𝑇𝑖 | 𝑇𝑗 ∨𝑇𝑗 | 𝑇𝑖 . (8)

(iii) The relative deadlines are all equal to their corresponding

periods, i.e.,

∀𝑖, 𝑗 ∈ [𝑛] : 𝐷𝑖 = 𝑇𝑖 . (9)

The first two assumptions imply that

∀𝑖, 𝑗 ∈ [𝑛] : 𝑖 ≤ 𝑗 =⇒ 𝑇𝑖 | 𝑇𝑗 . (10)

For these restricted systems, it is not too hard to show that

∀𝑖, 𝑗 ∈ [𝑛] \ [𝑘 − 1] : 𝛽𝑖 = 𝜇𝑖 = 𝑇𝑖 (11)

∀𝑖 ∈ [𝑛] : rbf𝑖 (𝑇𝑖) = 𝑇𝑖
∑

𝑗∈[𝑖] 𝑈 𝑗 (12)

Then, using Corollary 3.1, Corollary 3.2, Definition (4) and Defini-

tion (5), we get the following identities:

𝐵max = min

𝑖∈[𝑛]\[𝑘−1]

{
𝑇𝑖 (1 −

∑
𝑗∈[𝑖] 𝑈 𝑗)

}
(13)

𝑈max = 1 −∑𝑗∈[𝑛] 𝑈 𝑗 (14)

Thus, 𝐵max and 𝑈max can be computed efficiently for Γ𝑛 . Let ℓ be
defined as follows:

ℓ = max{𝑙 ∈ [𝑛] \ [𝑘 − 1] | 𝛽𝑙 − rbf𝑙 (𝛽𝑙) = 𝐵max} (15)

Using Equations (11,12), ℓ is the largest number in [𝑛] \ [𝑘 − 1]
such that

𝑇ℓ (1 −
∑

𝑗∈[ℓ] 𝑈 𝑗) = 𝐵max (16)

In the next theorem, we show that Dimensioning can be solved

efficiently for systems if they satisfy the assumptions laid out at

the beginning of the section.

Theorem 4.1. If priorities are rate-monotonic, periods are har-

monic, and deadlines are equal to periods, then for an instance (Γ𝑛,
𝐵min, 𝑘) of Dimensioning exactly one of the following statements is

true:

(i) 𝐵max is less than 𝐵min and hence the instance is infeasible.

(ii) 𝐵max is at least 𝐵min. In this case, an optimal solution ⟨(𝑏1, 𝑝1),
(𝑏2, 𝑝2)⟩ can be determined from the following properties:

𝑝1 = max{𝑇𝑖 | 𝑖 ∈ [𝑛] \ [ℓ − 1],𝑇𝑖 ≤ 𝐵max/𝑈max} (17)

𝑝2 = min{𝑇𝑖 | 𝑖 ∈ [𝑛] \ [ℓ − 1],𝑇𝑖 ≥ 𝐵max/𝑈max} (18)

𝑏1 + 𝑏2 = 𝐵max (19)

𝑏1

𝑝1
+ 𝑏2
𝑝2

= 𝑈max (20)

𝑏1, 𝑏2 ≥ 0 (21)

Thus, the optimal objective value is𝑈max; the optimal solution

and objective value are both independent of 𝐵min.

Proof Sketch. We only consider the case where 𝐵max is at least

𝐵min because the other case is trivial.

First, we show that 𝑝1 and 𝑝2 are well-defined. From Equa-

tions (16,14), we get

𝐵max < 𝑇ℓ ≤
𝐵max

𝑈max

(22)

Thus, we have

𝑇ℓ ∈ {𝑇𝑖 | 𝑖 ∈ [𝑛] \ [ℓ − 1],𝑇𝑖 ≤ 𝐵max/𝑈max} ≠ ∅,

and hence 𝑝1 is well-defined. Similarly, by using Equations (13,14),

we can show that 𝑇𝑛 ≥ 𝐵max/𝑈max and hence 𝑝2 is well-defined.

We note that 𝑝1 must be equal to𝑇𝛼 for some 𝛼 ∈ [𝑛] \ [ℓ − 1], and
𝑝2 must be equal to 𝑇𝛼 or 𝑇

min(𝛼+1,𝑛) . Thus, we must have

𝑇ℓ ≤ 𝑇𝛼 = 𝑝1 ≤ 𝑝2 ≤ 𝑇min(𝛼+1,𝑛) ≤ 𝑇𝑛 (23)

Next, we show that we can always find values for 𝑏1 and 𝑏2 that

satisfy Equations (19–21). If 𝑝1 and 𝑝2 are equal, then (𝑏1, 𝑏2) =
(𝐵max, 0) works; otherwise, from Equations (19,20), we get

𝑏1 =
𝑈max − 𝐵max

𝑝2

1

𝑝1
− 1

𝑝2

𝑏2 =

𝐵max

𝑝1
−𝑈max

1

𝑝1
− 1

𝑝2

Then, from Equations (17,18,23), it follows that 𝑏1 and 𝑏2 are non-

negative.

The first two constraints in Dimensioning are met by 𝑏1, 𝑝1, 𝑏2,

and 𝑝2 because

𝐵min ≤ 𝑏1 + 𝑏2 = 𝐵max < 𝑇ℓ ≤ 𝑝1 ≤ 𝑝2
We assumed 𝐵min ≤ 𝐵max when we started the proof; the second

inequality follows from Equation (16), and the other inequalities fol-

low from Equation (23). Equation (20) implies that the objective of

maximizing the utilization is achieved by ⟨(𝑏1, 𝑝1), (𝑏2, 𝑝2)⟩. Thus,

RTNS 2023, June 07–08, 2023, Dortmund, Germany Singh and Baruah

we can complete the proof by verifying that the servers are feasi-

ble, i.e., they satisfy the third constraint in Dimensioning. Using

Corollary 2.2, the server is feasible if and only if

∀𝑖 ∈ [𝑛]\[𝑘−1] : ∃𝑡 ∈ (0, 𝐷𝑖] : rbf𝑖 (𝑡)+
⌈
𝑡

𝑝1

⌉
𝑏1+

⌈
𝑡

𝑝2

⌉
𝑏2 ≤ 𝑡 (24)

We will prove the above statement by considering two cases in the

next two paragraphs.

Case I. For any 𝑖 ∈ [𝛼] − [𝑘 − 1], we can choose 𝑡 = 𝑇𝑖 to get

rbf𝑖 (𝑇𝑖) +
⌈
𝑇𝑖

𝑝1

⌉
𝑏1 +

⌈
𝑇𝑖

𝑝2

⌉
𝑏2

= rbf𝑖 (𝑇𝑖) + 𝑏1 + 𝑏2 (using Equation (23), Assumption (7))

=𝑇𝑖
∑

𝑗∈[𝑖] 𝑈 𝑗 + 𝑏1 + 𝑏2 (using Equation (12))

=𝑇𝑖
∑

𝑗∈[𝑖] 𝑈 𝑗 + 𝐵max (using Equation (19))

=𝑇𝑖 + 𝐵max −𝑇𝑖 (1 −
∑

𝑗∈[𝑖] 𝑈 𝑗)
≤𝑇𝑖 (using Equation (13))

Case II. For any 𝑖 ∈ [𝑛] \ [𝛼], we can choose 𝑡 = 𝑇𝑖 to get

rbf𝑖 (𝑇𝑖) +
⌈
𝑇𝑖

𝑝1

⌉
𝑏1 +

⌈
𝑇𝑖

𝑝2

⌉
𝑏2

= rbf𝑖 (𝑇𝑖) +
𝑇𝑖

𝑝1
𝑏1 +

𝑇𝑖

𝑝2
𝑏2

(using Equation (23), Assumption (10))

= rbf𝑖 (𝑇𝑖) +𝑇𝑖𝑈max (using Equation (20))

=𝑇𝑖
∑

𝑗∈[𝑖] 𝑈 𝑗 +𝑇𝑖𝑈max (using Equation (12))

=𝑇𝑖 +𝑇𝑖 (𝑈max − (1 −
∑

𝑗∈[𝑖] 𝑈 𝑗))
≤𝑇𝑖 (using Equation (14))

□

We distill the analysis carried out in this section into Algorithm 3

which solves Dimensioning in the special case studied in this

section. Lines 1,5–8 run in O(𝑛) time; the remaining lines run in

O(1) time. The next theorem follows.

Theorem 4.2. When priorities are rate-monotonic, periods are

harmonic, and deadlines are equal to periods, Algorithm 3 solves

Dimensioning in O(𝑛) time.

We examine the behavior of Algorithm 3 by varying a parameter

of a simple system in the next example.

Example 4.3. Table 1 shows the solution to Dimensioning found

by Algorithm 3 for four systems when 𝑘 = 1 and 𝐵min ≤ 𝐵max.

The systems differ only in the wcet of their lowest priority task 𝜏3.

Each server has a budget of 4 units and consumes all the residual

utilization, i.e., 1 − ∑
𝑖∈[3] 𝑈𝑖 , in the system. As we go down the

table, the residual utilization in the system decreases because 𝐶3
increases; the last two columns show that Algorithm 3 allocates

more budget to larger periods as we go down the table.

5 DIMENSIONING IN GENERAL

We formulate Dimensioning for general FP systems as an MINLP

(mixed-integer nonlinear program) in Figure 1. The formulation

is not exact yet because we treat𝑚 as a constant in the program

and Dimensioning requires𝑚 to be arbitrary (we will correct this

Algorithm 3 Solve Dimensioning in special case.

1: 𝐵max ← min𝑖∈[𝑛]\[𝑘−1]
{
𝑇𝑖 (1 −

∑
𝑗∈[𝑖] 𝑈 𝑗)

}
2: if 𝐵max < 𝐵min then

3: return “infeasible”

4: end if

5: ℓ ← max{𝑙 ∈ [𝑛] \ [𝑘 − 1] | 𝑇𝑙 (1 −
∑

𝑗∈[𝑙] 𝑈 𝑗) = 𝐵max}
6: 𝑈max ← 1 −∑𝑗∈[𝑛] 𝑈 𝑗

7: 𝑝1 ← max{𝑇𝑖 | 𝑖 ∈ [𝑛] \ [ℓ − 1],𝑇𝑖 ≤ 𝐵max/𝑈max}
8: 𝑝2 ← min{𝑇𝑖 | 𝑖 ∈ [𝑛] \ [ℓ − 1],𝑇𝑖 ≥ 𝐵max/𝑈max}
9: if 𝑝1 = 𝑝2 then

10: return ⟨(𝐵max, 𝑝1)⟩
11: end if

12: 𝑥 ← 𝑈max − 𝐵max/𝑝2
13: 𝑦 ← 1/𝑝1 − 1/𝑝2
14: 𝑏1 ← 𝑥/𝑦
15: 𝑏2 ← 𝐵max − 𝑏1
16: return ⟨(𝑏1, 𝑝1), (𝑏2, 𝑝2)⟩

Table 1: Four Dimensioning instances solved by Algorithm 3

Γ Optimal solution Periods in solution

⟨(1, 5), (3, 10), (0, 20)⟩ ⟨(1, 5), (3, 10)⟩ {5, 10}
⟨(1, 5), (3, 10), (1, 20)⟩ ⟨(0.5, 5), (3.5, 10)⟩ {5, 10}
⟨(1, 5), (3, 10), (2, 20)⟩ ⟨(4, 10)⟩ {10}
⟨(1, 5), (3, 10), (3, 20)⟩ ⟨(3, 10), (1, 20)⟩ {10, 20}

departure from Dimensioning shortly). We observe the following

facts about the program:

(i) The constants 𝐶 , 𝑇 , and 𝐷 , which are vectors of dimension

𝑛, describe the FP subsystem Γ. The constants 𝐶 , 𝑇 , 𝐷 , 𝐵min

and 𝑘 describe an instance of Dimensioning.

(ii) The constant 𝐵max (resp., 𝑈max) is computed for Γ and 𝑘

using Algorithm 1 (resp., Algorithm 2).

(iii) The variables 𝑡 , 𝑏, 𝑝 , 𝑥 and 𝑦 are described in constraints 10–

13. 𝑏 and 𝑝 are vectors of dimension𝑚; we emphasize that

𝑚 is fixed in the program. 𝑘 , 𝑏 and 𝑝 describe the collection

of servers. We will build up to an interpretation of 𝑡 , 𝑥 , and

𝑦 in the following points.

(iv) The program and Dimensioning have the same objective.

(v) Constraint 1 is the first constraint in Dimensioning.

(vi) The nonnegativity of 𝑡 , 𝑝 , and 𝑃 and constraints 5–6 imply

that 𝑥 and 𝑦 are nonnegative.

(vii) The nonnegativity of 𝑥 and 𝑦, the positivity of 𝐶 , and con-

straint 4 imply that 𝑡 is positive.

(viii) The positivity of 𝑡 and constraint 6 imply that 𝑝 is positive;

thus, the objective function is well-defined.

(ix) The positivity of 𝑝 and constraints 2–3 are collectively equiv-

alent to the second constraint in Dimensioning.

(x) Since 𝑡𝑖 is positive and at most 𝐷𝑖 (constraint 7), we have

𝑡𝑖 ∈ (0, 𝐷𝑖].
(xi) In any optimal solution for the program, we must have 𝑥𝑖, 𝑗 =

⌈𝑡𝑖/𝑇𝑗 ⌉ and 𝑦𝑖, 𝑗 = ⌈𝑡𝑖/𝑝 𝑗 ⌉ to ensure that 𝑏 𝑗 is maximal in

constraint 4. Thus, in any optimal solution, for all 𝑖 ∈ [𝑛] \

Dimensions of fixed-priority aperiodic servers RTNS 2023, June 07–08, 2023, Dortmund, Germany

[𝑘 − 1], we must have

𝐶𝑖 +
∑︁

𝑗∈[𝑖−1]
⌈𝑡𝑖/𝑇𝑗 ⌉𝐶 𝑗 +

∑︁
𝑗∈[𝑚]

⌈𝑡𝑖/𝑝 𝑗 ⌉𝑏 𝑗 ≤ 𝑡𝑖

⇐⇒
∑︁
𝑗∈[𝑖]
⌈𝑡𝑖/𝑇𝑗 ⌉𝐶 𝑗 +

∑︁
𝑗∈[𝑚]

⌈𝑡𝑖/𝑝 𝑗 ⌉𝑏 𝑗 ≤ 𝑡𝑖 (since 𝑡𝑖 ∈ (0, 𝐷𝑖])

⇐⇒ rbf𝑖 (𝑡𝑖) +
∑︁

𝑗∈[𝑚]
⌈𝑡𝑖/𝑝 𝑗 ⌉𝑏 𝑗 ≤ 𝑡𝑖

Using Corollary 2.2, the above constraint is equivalent to the

third constraint in Dimensioning.

(xii) Constraints 8-9 are not essential to the formulation but they

help to strengthen it.

Therefore, the program is a formulation of Dimensioning for a

fixed𝑚. In the next theorems, we show that𝑚 can be restricted

to 𝑛 − (𝑘 − 1) in Dimensioning and therefore the MINLP with

𝑚 = 𝑛 − (𝑘 − 1) is an exact formulation of Dimensioning.

Theorem 5.1. There exists an optimal solution to Dimensioning

where𝑚 ≤ 𝑛 − (𝑘 − 1).

Proof. Consider an optimal collection of𝑚 servers such that

𝑚 > 𝑛 − (𝑘 − 1). This collection must satisfy the constraints in the

above MINLP for some 𝑡 ′, 𝑥 ′, 𝑦′, 𝑏′, 𝑝′. In particular, constraint 4

must be satisfied:

∀𝑖 ∈ [𝑛] \ [𝑘 − 1] : 𝐶𝑖 +
∑︁

𝑗∈[𝑖−1]
𝑥 ′𝑖, 𝑗𝐶 𝑗 +

∑︁
𝑗∈[𝑚]

𝑦′𝑖, 𝑗𝑏
′
𝑗 ≤ 𝑡

′
𝑖

Consider the following linear program where 𝑡 ′, 𝑥 ′, 𝑦′, 𝑝′ and 𝐶
are constants and 𝑏 is variable:

max

∑
𝑗∈[𝑚] 𝑏 𝑗/𝑝′𝑗

s.t.

∑
𝑗∈[𝑚] 𝑦

′
𝑖, 𝑗
𝑏 𝑗 ≤ 𝑡 ′

𝑖
−∑𝑗∈[𝑖] 𝑥

′
𝑖, 𝑗
𝐶 𝑗 , 𝑖 ∈ [𝑛] \ [𝑘 − 1]

𝑏𝑖 ≥ 0, 𝑖 ∈ [𝑚]
𝑏 ∈ R𝑚

Clearly, 𝑏′ is an optimal solution for the above program. Therefore,

the program has basic feasible solutions. In any basic feasible solu-

tion, at least𝑚 constraints must be satisfied as equalities because

the program has𝑚 variables. Since the program has 𝑛 − (𝑘 − 1)
constraints in the first line and𝑚 nonnegativity constraints in the

second line, at least𝑚 − 𝑛 + (𝑘 − 1) of the variables must be equal

to zero in a basic feasible solution. Equivalently, at most 𝑛 − (𝑘 − 1)
variables are nonzero in a basic feasible solution. The nonzero

variables and their corresponding periods in any basic feasible so-

lution constitute an optimal solution to Dimensioning in which

𝑚 ≤ 𝑛 − (𝑘 − 1). □

The next theorem follows from the previous theorem and the

observations made at the start of this section about the MINLP in

Figure 1.

Theorem 5.2. If𝑚 is equal to 𝑛 − (𝑘 − 1) and 𝐵max (resp., 𝑈max)

has been computed using Algorithm 1 (resp., Algorithm 2), then the

MINLP in Figure 1 is a valid formulation of Dimensioning.

MINLPs can often be solved more efficiently when they are

convex [6]. We note that constraints 4 and 6 are nonconvex; how-

ever, the constraints are quadratic and specialized approaches have

been proposed for solving mixed-integer quadratically-constrained

programs (MIQCPs) (see, for instance, [5]). We do not believe that

simply feeding theMINLP in Figure 1 into variousMINLP orMIQCP

solvers and choosing the best solver based on these results is a good

idea. There is a lot of structure in Dimensioning, and we are in the

early stages of determining how Dimensioning can be decomposed

into smaller problems that are tractable as MINLP formulations or

otherwise; this structure is examined to a limited extent in the next

subsection.

Recall from Theorem 3.3 that we one server with a small pe-

riod such as 𝑔 = gcd𝑖∈[𝑛]\[𝑘−1] 𝜇𝑖 and utilization 𝑈max is feasi-

ble. Thus, if we get a Dimensioning instance (Γ, 𝑘, 𝐵min) where
𝐵min ≤ 𝑔𝑈max, then the optimal value for the instance is 𝑈max.

This idea that a Dimensioning instance with a small 𝐵min can be

solved immediately can be further strengthened by considering the

restricted dual of Dimensioning described in the next subsection.

5.1 A dual of Dimensioning

In the dual problem of Dimensioning, the objective is to find 𝑏1, 𝑝1,

. . . , 𝑏𝑚, 𝑝𝑚 for an arbitrary𝑚 that maximize∑︁
𝑗∈[𝑚]

𝑏 𝑗

subject to the following constraints:

(i)

∑
𝑗∈[𝑚] 𝑏 𝑗/𝑝 𝑗 = 𝑈max,

(ii)

∑
𝑗∈[𝑚] 𝑏 𝑗 ≤ 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑚 , and

(iii) the collection of servers (𝑘, 𝑏1, 𝑝1), (𝑘,𝑏2, 𝑝2), . . . , (𝑘,𝑏𝑚, 𝑝𝑚)
are feasible.

We denote the optimal budget for this problem by 𝐵max (𝑈max).
An instance of this problem is given by the pair (Γ, 𝑘). Any Di-

mensioning instance (Γ, 𝑘, 𝐵min) induces an instance (Γ, 𝑘) of the
above problem; if the optimal value of the induced instance is at

least 𝐵min then the optimal solution of the induced instance is also

an optimal solution of the original instance and the optimal value

of the original instance is 𝑈max. Thus, the problem of computing

𝐵max (𝑈max) is closely related to Dimensioning.

We will propose an MINLP for computing 𝐵max (𝑈max) which
is similar to the MINLP for Dimensioning (Figure 1); the major

difference from the previous MINLP is that the periods are constant

in this MINLP, and hence there are fewer nonlinear constraints.

The next theorem explains why we can restrict our attention to a

small set of periods.

Theorem 5.3. For any collection of servers with cumulative uti-

lization𝑈max, the period of each server must divide

𝑔 = gcd

𝑖∈𝐼
𝜇𝑖 , (25)

where 𝐼 is given by

𝐼 = {𝑖 ∈ [𝑛] \ [𝑘 − 1] | 1 − rbf𝑖 (𝜇𝑖)/𝜇𝑖 = 𝑈max} (26)

Proof Sketch. Let 𝑖 ∈ 𝐼 , and let the server have parameters

𝑘, 𝑏1, 𝑝1, . . . , 𝑏𝑚, 𝑝𝑚 . Recall from the proof of Corollary 3.2 that

since the server is feasible we must have

∃𝑡 ∈ (0, 𝐷𝑖] :
∑︁

𝑗∈[𝑚]

⌈
𝑡

𝑝 𝑗

⌉
𝑝 𝑗𝑈 𝑗 ≤ 𝑡 − rbf𝑖 (𝑡)

The lhs in the inequality is at least𝑈max and the rhs is at most𝑈max

using Corollary 3.2 and Equations (5,26). Thus, the inequality must

RTNS 2023, June 07–08, 2023, Dortmund, Germany Singh and Baruah

max

∑
𝑗∈[𝑚] 𝑏 𝑗/𝑝 𝑗

s.t. (1) ∑
𝑗∈[𝑚] 𝑏 𝑗 ≥ 𝐵min

(2) ∑
𝑗∈[𝑚] 𝑏 𝑗 ≤ 𝑝1

(3) 𝑝𝑖 ≤ 𝑝 𝑗 , 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑖 − 1]
(4) 𝐶𝑖 +

∑
𝑗∈[𝑖−1] 𝑥𝑖, 𝑗𝐶 𝑗 +

∑
𝑗∈[𝑚] 𝑦𝑖, 𝑗𝑏 𝑗 ≤ 𝑡𝑖 , 𝑖 ∈ [𝑛] \ [𝑘 − 1]

(5) 𝑡𝑖 ≤ 𝑇𝑗𝑥𝑖, 𝑗 , 𝑖 ∈ [𝑛] \ [𝑘 − 1], 𝑗 ∈ [𝑖 − 1]
(6) 𝑡𝑖 ≤ 𝑝 𝑗𝑦𝑖, 𝑗 , 𝑖 ∈ [𝑛] \ [𝑘 − 1], 𝑗 ∈ [𝑚]
(7) 𝑡𝑖 ≤ 𝐷𝑖 , 𝑖 ∈ [𝑛] \ [𝑘 − 1]
(8) ∑

𝑗∈[𝑚] 𝑏 𝑗 ≤ 𝐵max

(9) ∑
𝑗∈[𝑚] 𝑏 𝑗/𝑝 𝑗 ≤ 𝑈max

(10) 𝑏, 𝑝 ∈ R𝑚≥0
(11) 𝑡 ∈ R

𝑛−(𝑘−1)
≥0

(12) 𝑥 ∈ Z(𝑛 (𝑛−1)−(𝑘−1) (𝑘−2))/2

(13) 𝑦 ∈ Z(𝑛−(𝑘−1))𝑚

Figure 1: MINLP for Dimensioning

be satisfied as an equality with 𝑡 = 𝜇𝑖 :∑︁
𝑗∈[𝑚]

⌈
𝜇𝑖

𝑝 𝑗

⌉
𝑝 𝑗𝑈 𝑗 = 𝑈max

𝑝 𝑗 must divide 𝜇𝑖 to ensure that

∑
𝑗 𝑈 𝑗 = 𝑈max. Thus, 𝑝 𝑗 divides 𝜇𝑖

for all 𝑖 ∈ 𝐼 , and hence it divides 𝑔. □

Let 𝑔′ be given by

𝑔′ = gcd

𝑖∈[𝑛]\[𝑘−1]
𝜇𝑖 (27)

From Theorem 3.3, we know that 𝐵max (𝑈max) is at least 𝑈max𝑔
′
.

Thus, 𝑈max𝑔
′
is a lower bound for

∑
𝑗 𝑏 𝑗 , which in turn is a lower

bound for the periods, using the second constraint in the problem.

Thus, periods can be chosen from the following set:

{𝑔/𝑥 | 𝑥 ∈ N>0, 𝑔/𝑥 > 𝑈max𝑔
′}

𝑈max𝑔 is the budget corresponding to a single server with period 𝑔.

We can perform binary search in the above set to find the largest

period 𝑔′′ such that the server (𝑘,𝑈max𝑔
′′, 𝑔′′) is feasible. 𝑈max𝑔

′′

is the largest budget for one server with utilization 𝑈max and we

denote it as 𝐵1
max
(𝑈max). Now, periods can be chosen from the set

{𝑔/𝑥 | 𝑥 ∈ N>0, 𝑔/𝑥 > 𝐵1
max
(𝑈max)}.

The MINLP in Figure 1 can be modified as follows to solve the

current problem:

(i) 𝑝 is now a vector constant with elements

{𝑔/𝑥 | 𝑥 ∈ N>0, 𝑔/𝑥 > 𝐵1
max
(𝑈max)}.

in increasing order. Like the previous MINLP,𝑚 still denotes

the length of 𝑝 , or equivalently the length of 𝑏. Unlike the

previous,𝑚 is not equal to 𝑛 − (𝑘 − 1); instead, it is equal to
|𝑝 | since 𝑝 is constant in this MINLP.

(ii) The objective is max

∑
𝑗∈[𝑚] 𝑏 𝑗 .

(iii) Constraints 1–3 are replaced by the following constraints∑
𝑗∈[𝑚] 𝑏 𝑗 ≥ 𝐵1 (𝑈max)∑

𝑗∈[𝑚] 𝑏 𝑗/𝑝 𝑗 = 𝑈max

𝑏𝑖 > 0 =⇒ ∑
𝑗∈[𝑚] 𝑏 𝑗 ≤ 𝑝𝑖 , 𝑖 ∈ [𝑚]

(iv) In constraints 4–7, 𝑖 can be restricted to ([𝑛] \ [𝑘 − 1]) \ 𝐼
becausewhen 𝑖 ∈ 𝐼 the constraints are collectively equivalent
to the utilization constraint included above, i.e.,∑︁

𝑗∈[𝑚]
𝑏 𝑗/𝑝 𝑗 = 𝑈max .

We note that constraint 6 is a linear constraint in this program

(it was nonlinear in the MINLP for Dimensioning). Reducing non-

linearity in an MINLP brings it closer to a MILP making it more

tractable. However, we are not able to eliminate nonlinearity since

constraint 4 is still quadratic.

5.2 An example demonstrating the use of the

two MINLPs

Consider the following Dimensioning instance Γ = ⟨(1, 4), (1, 7)⟩,
𝑘 = 1, and an arbitrary 𝐵min. Using Algorithm 1, we get the follow-

ing values for 𝛽𝑖 :

𝑖 𝛽𝑖 𝛽𝑖 − rbf𝑖 (𝛽𝑖)
1 4 3

2 7 4

From Corollary 3.1, 𝐵max is equal to 3. Using Algorithm 2, we

get the following values for 𝜇𝑖 :

𝑖 𝜇𝑖 1 − rbf𝑖 (𝜇𝑖)/𝜇𝑖
1 4 3/4
2 7 4/7

From Corollary 3.2,𝑈max is equal to 4/7 ≈ 0.5714.

First, we solve the dual of Dimensioning. From Definitions (26,

25, 27), it follows that 𝐼 = {2}, 𝑔 = gcd(7) = 7, and 𝑔′ = gcd(4, 7) =
1. Thus, periods can be chosen from the set

{7/𝑥 | 𝑥 ∈ N>0, 7/𝑥 > 4/7} = {7, 7/2, . . . , 7/12}
By performing binary search on this set, we find that amongst

all servers with utilization 4/7, the server (2, 7/2) has the largest
period, i.e., 𝐵1

max
(𝑈max) = 2. Thus, the periods can be restricted

even further to the set

{7/𝑥 | 𝑥 ∈ N>0, 7/𝑥 > 2} = {7, 7/2, 7/3}

Dimensions of fixed-priority aperiodic servers RTNS 2023, June 07–08, 2023, Dortmund, Germany

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Minimum budget

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

M
ax

im
um

ut
ili

za
ti

on

2 servers

1 server

Figure 2: The dashed blue line shows optimal values of Di-

mensioning where Γ = ⟨(1, 4), (1, 7)⟩, 𝑘 = 1, and 𝐵min ∈
[0, 𝐵max]; the dotted red line shows optimal values when only

one server is used.

We use the global optimization solver BARON [27] to solve the

MINLP for the dual. The solver returns ⟨(3/2, 7/2), (1, 7)⟩ as an
optimal solution, and the optimal value 𝐵max (𝑈max) is equal to 5/2.

For any instance of Dimensioning with 𝐵min ≤ 5/2 the optimal

value is 𝑈max ≈ 0.5714. To understand how the optimal value

varies as a function of 𝐵min in (2.5, 3] (recall that 𝐵max = 3), we

solve 10 instances of the MINLP for Dimensioning where 𝐵min ∈
{2.55, 2.60, . . . , 3.00} and𝑚 = 2 (recall from Theorem 5.1 that the

choice𝑚 = 𝑛 − (𝑘 − 1) can be made without any loss of generality).

The optimal solution in all 10 cases is given by

⟨(4 − 𝐵min, 𝐵min + 1), (2𝐵min − 4, 7)⟩,

and the optimal value is

24 − 9𝐵min + 2𝐵2
min

7𝐵min + 7
We show the results in Figure 2. While the maximum utilization

for one server sharply drops off at 𝐵min = 2 from 4/7 to 1/2, the
maximum utilization for𝑚 servers remains at 4/7 until 𝐵min = 2.5

and then it gradually decreases to 15/28. Thus, multiple servers

help in finding a better middle ground for the conflicting objectives

of maximizing budget and maximizing utilization than one server.

The methodology that we have described in this section can

be repeated for any (Γ, 𝑘), in principle, to visualize the full design

space for Dimensioning; however, more work needs to be done to

understand how to make it scale for larger Γ.

6 IMPLEMENTATION ISSUES

When implementing𝑚 servers at the same priority 𝑘 , we have two

choices:

(i) Implement a server which simulates a single task. For each

𝑖 ∈ [𝑚], instantiate a server which simulates a regular task

(𝑏𝑖 , 𝑝𝑖).

(ii) Implement a server which simulates multiple tasks, and in-

stantiate it once.

In the first case, when a server’s budget is exhausted and the current

job is still pending, we need to switch over to a different server

which has nonzero budget; the time used in switching contexts is

wasteful. In the second case, some needless context switches can

be avoided, but we must implement a server which can simulate

multiple tasks. To the best of our knowledge, such servers have not

been specified before. Now, we will outline the specifications of a

regular sporadic server which is capable of simulating a single task

and an extended sporadic server which is capable of simulating

multiple tasks. This extension can also be used as a blueprint for

extending aperiodic servers other than the sporadic server.

6.1 A Regular Sporadic Server

The sporadic server simulates a swarm of small sporadic tasks with

the same period 𝑃 and cumulative wcet 𝐵 [24]. From a schedulabil-

ity perspective, the sporadic server simulates a single task (𝐵, 𝑃)
since there is no distinction between the swarm and the single task

at a critical instant [17]. The following description of a sporadic

server is obtained by simplifying a corrected POSIX sporadic server
specification [24, Sec. 4].

At any instant, the server maintains a nonempty queue,

𝑞 = ⟨(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑥 , 𝑏𝑥)⟩.

Each element (𝑎𝑖 , 𝑏𝑖) denotes a chunk 𝑏𝑖 of the budget 𝐵 which

becomes active at time 𝑎𝑖 . The server ensures that 𝑞 is sorted in

nondecreasing order of activation times, and that the sum of the

chunks of budget in𝑞 equals 𝐵; thus, there is no loss or amplification

of budget.

The formal budget at an instant 𝑡 is 0 if the first chunk in 𝑞 is

not active, i.e., 𝑎1 > 𝑡 ; otherwise, the formal budget at 𝑡 is 𝑏1 − 𝑢𝑠𝑔,
where 𝑢𝑠𝑔 is a variable maintained by the server which stores the

portion of 𝑏1 that has been consumed by the server. A server is

said to be exhausted at an instant 𝑡 if the formal budget at 𝑡 is less

than or equal to zero. The formal budget at 𝑡 is a lower bound for

the true budget at 𝑡 because a second chunk in 𝑞 might become

active before exhaustion occurs at 𝑡 + 𝑏1 − 𝑢𝑠𝑔 if 𝑎2 ≤ 𝑡 + 𝑏1 − 𝑢𝑠𝑔.
If 𝑎2 ≤ 𝑡 + 𝑏1 − 𝑢𝑠𝑔, then the true budget is at least 𝑏1 + 𝑏2 − 𝑢𝑠𝑔.
Thus, the true budget is equal to the sum of the budgets of chunks

with indices in the set given by

{𝑖 ∈ [𝑥] | 𝑎𝑖 ≤ 𝑡 +
∑

𝑗∈[𝑖−1] 𝑏𝑖 − 𝑢𝑠𝑔} (28)

At certain points in the execution, the server syncs the formal

budget and the true budget by merging chunks that contribute to

the true budget into one chunk.

Initially, 𝑞 equals ⟨(0, 𝐵)⟩ and 𝑢𝑠𝑔 equals 0. The server modifies

its state (𝑞,𝑢𝑠𝑔) in the following cases:

(i) An aperiodic request arrives at instant 𝑡 when there are no

pending aperiodic requests and 𝑎1 ≤ 𝑡 . All chunks that con-
tribute to the true budget are merged into a single chunk

with activation time 𝑡 , and then the formal budget equals the

true budget. We demonstrate this rule through an example:

say that when the request arrives at time 𝑡 , we have

𝑞 = ⟨(𝑡 − 5, 1), (𝑡 − 3, 1), (𝑡 + 2, 1)⟩, 𝑢𝑠𝑔 = 0.

RTNS 2023, June 07–08, 2023, Dortmund, Germany Singh and Baruah

All three chunks can be used to serve aperiodic requests

continuously in the interval [𝑡, 𝑡 + 2]. Therefore, we merge

the chunks into one, and we have

𝑞 = ⟨(𝑡, 3)⟩, 𝑢𝑠𝑔 = 0.

(ii) The server begins execution at 𝑡1 and ends at 𝑡2. The server

stops executing due to preemption, exhaustion, or comple-

tion of all pending aperiodic tasks. At 𝑡2, 𝑢𝑠𝑔 is increased by

𝑡2 − 𝑡1:
[𝑢𝑠𝑔]at 𝑡2 = [𝑢𝑠𝑔]at 𝑡1 + 𝑡2 − 𝑡1

𝑞, and𝑏1 in particular, do not change between 𝑡1 and 𝑡2. Thus,

the formal budget at 𝑡2 is 𝑡2 − 𝑡1 less than the formal budget

at 𝑡1; the server ensures that

𝑡2 − 𝑡1 ≤ [𝑏1 − 𝑢𝑠𝑔]at 𝑡1 ,
thus ensuring that the formal budget at 𝑡2 is nonnegative.

(iii) At instant 𝑡 , the server stops executing due to exhaustion. A

new element (𝑎1 + 𝑃,𝑏1) is pushed to the back of 𝑞, the head
of 𝑞 is popped off, and 𝑢𝑠𝑔 is reset to 0.

(iv) At instant 𝑡 , the server stops executing due to completion of

all pending requests but it is not exhausted. A new element

(𝑎1 + 𝑃,𝑢𝑠𝑔) is pushed to the back of the queue, the head of

𝑞 is modified to (𝑎1, 𝑏1 − 𝑢𝑠𝑔), and 𝑢𝑠𝑔 is reset to 0. We note

that 𝑏1 − 𝑢𝑠𝑔 > 0 because the server is not exhausted.

6.2 An Extended Sporadic Server

The extended sporadic server simulates𝑚 swarms of small sporadic

tasks where the 𝑖-th swarm contains tasks with the same period

𝑃𝑖 and cumulative wcet 𝐵𝑖 . From a schedulability perspective, the

extended sporadic server simulates

⟨(𝐵1, 𝑃1), (𝐵2, 𝑃2), . . . , (𝐵𝑚, 𝑃𝑚)⟩.
We assume that 𝑃1 < 𝑃2 < · · · < 𝑃𝑚 .

At any instant, the server maintains a nonempty queue,

𝑞 = ⟨(𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), . . . , (𝑎𝑥 , 𝑏𝑥 , 𝑐𝑥)⟩.
Each element (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) denotes a chunk 𝑏𝑖 of the budget associated
with period 𝑐𝑖 ∈ {𝑃1, . . . , 𝑃𝑚}; 𝑎𝑖 is the time at which the chunk

becomes active. The server ensures that for any two indices 𝑖, 𝑗 we

have

𝑖 < 𝑗 =⇒ 𝑎𝑖 < 𝑎 𝑗 ∨ (𝑎𝑖 = 𝑎 𝑗 ∧ 𝑐𝑖 < 𝑐 𝑗) (29)

Thus, the elements are sorted primarily in nondecreasing order

of activation times, and secondarily in rate-monotonic order. The

server also ensures that the sum of the chunks of budget in 𝑞 with

period 𝑃𝑖 is equal to 𝐵𝑖 for each 𝑖 ∈ [𝑚]; thus, there is no loss or

amplification of the budget associated with any period.

For the regular sporadic server, the formal budget is synced with

the true budget by merging adjacent chunks but in the extended

sporadic server adjacent chunks in 𝑞 may have different periods,

not allowing them to be merged with each other. We use a new

variable 𝑓 to store the cumulative budget of one or more chunks

at the head of 𝑞. The formal budget at an instant 𝑡 is 0 if 𝑎1 > 𝑡 ;

otherwise, the formal budget at 𝑡 is 𝑓 − 𝑢𝑠𝑔, where 𝑢𝑠𝑔 stores the
portion of 𝑓 that has been consumed by the server.

Initially, 𝑞 equals

⟨(0, 𝐵1, 𝑃1), (0, 𝐵2, 𝑃2), . . . , (0, 𝐵𝑚, 𝑃𝑚)⟩,

𝑓 equals

∑
𝑗∈[𝑚] 𝐵 𝑗 , and 𝑢𝑠𝑔 equals 0. The server modifies its state

(𝑞, 𝑓 ,𝑢𝑠𝑔) in the following cases:

(i) An aperiodic request arrives at instant 𝑡 when there are no

pending aperiodic requests and 𝑎1 ≤ 𝑡 . If a chunk at index

𝑖 contributes to the true budget, then 𝑎𝑖 is changed to 𝑡 +∑
𝑗∈[𝑖−1] 𝑏𝑖 −𝑢𝑠𝑔. All adjacent chunks with the same period

that contribute to the true budget are merged into a single

chunk. 𝑓 is set to the true budget. We demonstrate this rule

using an example: say that when the request arrives at time

𝑡 , we have

𝑞 = ⟨(𝑡 − 5, 1, 5), (𝑡 − 3, 1, 3), (𝑡 + 2, 1, 3)⟩, 𝑓 = 0, 𝑢𝑠𝑔 = 0.

All three chunks can be used to serve aperiodic requests

continuously in the interval [𝑡, 𝑡 + 2] and the last two chunks
can bemerged because they have the same period.Wemodify

𝑞 and 𝑓 to get

𝑞 = ⟨(𝑡, 1, 5), (𝑡 + 1, 2, 3)⟩, 𝑓 = 3, 𝑢𝑠𝑔 = 0.

The astute reader will observe that instead of the above

modification we could also have reordered 𝑞 safely to get

𝑞 = ⟨(𝑡, 1, 3), (𝑡, 1, 5), (𝑡 + 2, 1, 3)⟩, 𝑓 = 3, 𝑢𝑠𝑔 = 0.

The reordering allows 𝑞 to be more rate-monotonic and leads

to smaller activation times in a behavior of the server; how-

ever, reordering also requires more computation compared

to our initial proposal, which can be executed in linear time.

(ii) The server begins execution at 𝑡1 and ends at 𝑡2. As before, 𝑢𝑠𝑔

must be increased by 𝑡2 − 𝑡1, and the server ensures that the

formal budget at 𝑡2 is nonnegative by limiting the duration

of the execution:

𝑡2 − 𝑡1 ≤ [𝑓 − 𝑢𝑠𝑔]at 𝑡1
(iii) At instant 𝑡 , the server stops executing due to exhaustion. The

cumulative budget of a number of chunks at the head of 𝑞,

stored in 𝑓 , has been completely consumed; thus, now we

have 𝑓 = 𝑢𝑠𝑔. The head of 𝑞 is popped off, a new element

(𝑎1 + 𝑐1, 𝑏1, 𝑐1) is inserted in 𝑞 at a position that maintains

the order described in Equation (29), and 𝑢𝑠𝑔 is decreased by

𝑏1; this process is repeated until 𝑢𝑠𝑔 = 0. Finally, 𝑓 is reset

to the true budget.

(iv) At instant 𝑡 , the server stops executing due to completion of all

pending requests but it is not exhausted. The process described

in the previous step is also repeated here until we have

𝑢𝑠𝑔 < 𝑏1. Then, the head of 𝑞 is modified to (𝑎1, 𝑏1 −𝑢𝑠𝑔, 𝑐1),
a new element (𝑎1 + 𝑐1, 𝑢𝑠𝑔, 𝑐1) is inserted in 𝑞 at a position

that maintains the order described in Equation (29), 𝑢𝑠𝑔 is

reset to 0, and 𝑓 is reset to the true budget.

We note that the extended server reduces the unnecessary con-

text switch overhead mentioned at the start of Section 6 by keeping

track of the cumulative budget associated with different periods

through the variable 𝑓 . However, maintaining 𝑞 and 𝑓 takes more

time and 𝑞 takes more space since it stores triples. We have pre-

sented an informal specification for the extended sporadic server

but its effectiveness for specific applications and hardware plat-

forms has not been addressed here.

Dimensions of fixed-priority aperiodic servers RTNS 2023, June 07–08, 2023, Dortmund, Germany

7 CONCLUSION

We proposed Dimensioning, an optimization problemwhich allows

a system designer to understand the trade-off between choosing

a large budget and a large utilization when multiple servers are

allowed to run at a priority of their choice. In the restricted case of

harmonic rate-monotonic implicit-deadline FP systems, we showed

that the trade-off is nonexistent because a collection of two servers

with budget 𝐵max and utilization 𝑈max can be found in linear time

(Algorithm 3).We showed that the trade-off is present in general sys-

tems; for instance, in Figure 2 if the servers must have a minimum

budget of 2.2 (resp., 3) then their maximum cumulative utilization

is 0.571 (resp., 0.535). We showed how to compute the right end of

the flat part of the trade-off curve using one MINLP (Section 5.1),

and we showed how to compute points on the remainder of the

trade-off curve using another MINLP (Figure 1). We proposed a new

specification for an extended sporadic server which can simulate

multiple tasks at the same priority level (Section 6).

Many ideas introduced in this work need further investigation;

for instance, we do not know the answers to the following questions:

(1) Can we efficiently solve more general cases than the case

described in Section 4?

(2) How well do the MINLPs proposed in Section 5 scale for

larger instances of Dimensioning?WhichMINLP algorithms

are most effective for instances generated in practice? Can

we solve the general case without using MINLPs?

(3) Is the extended sporadic server specification in Section 6 an

improvement over multiple regular sporadic servers for real

applications?

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions. This work is supported

by the US National Science Foundation under Grant numbers CPS-

1932530, CNS-2141256 and CNS-2229290.

REFERENCES

[1] 2008. IEEE Standard for Information Technology - Portable Operating System

Interface (POSIX(R)). IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) (Dec.

2008), 1–3874. https://doi.org/10.1109/IEEESTD.2008.4694976

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. 1993. Applying

New Scheduling Theory to Static Priority Pre-Emptive Scheduling. Software

Engineering Journal 8, 5 (Sept. 1993), 284–292. https://doi.org/10.1049/sej.1993.

0034

[3] Neil C. Audsley, Alan Burns, Robert I. Davis, KenW. Tindell, and Andy J. Wellings.

1995. Fixed Priority Pre-Emptive Scheduling: AnHistorical Perspective. Real-Time

Systems 8, 2-3 (1995), 173–198. https://doi.org/10.1007/BF01094342

[4] G. Bernat and A. Burns. 1999. New Results on Fixed Priority Aperiodic Servers. In

Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054). 68–78.

https://doi.org/10.1109/REAL.1999.818829

[5] Timo Berthold, Stefan Heinz, and Stefan Vigerske. 2012. Extending a CIP Frame-

work to SolveMIQCPs. InMixed Integer Nonlinear Programming (The IMAVolumes

in Mathematics and Its Applications), Jon Lee and Sven Leyffer (Eds.). Springer,

New York, NY, 427–444. https://doi.org/10.1007/978-1-4614-1927-3_15

[6] Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth. 2012. Algorithms and Soft-

ware for Convex Mixed Integer Nonlinear Programs. In Mixed Integer Nonlinear

Programming (The IMA Volumes in Mathematics and Its Applications), Jon Lee and

Sven Leyffer (Eds.). Springer, New York, NY, 1–39. https://doi.org/10.1007/978-

1-4614-1927-3_1

[7] Pieter J. L. Cuijpers and Reinder J. Bril. 2007. Towards Budgeting in Real-Time

Calculus: Deferrable Servers. In Formal Modeling and Analysis of Timed Systems

(Lecture Notes in Computer Science), Jean-François Raskin and P. S. Thiagarajan

(Eds.). Springer, Berlin, Heidelberg, 98–113. https://doi.org/10.1007/978-3-540-

75454-1_9

[8] R.I. Davis and A. Burns. 2005. Hierarchical Fixed Priority Pre-Emptive Scheduling.

In 26th IEEE International Real-Time Systems Symposium (RTSS’05). 10 pp.–398.

https://doi.org/10.1109/RTSS.2005.25

[9] Rob Davis and Alan Burns. 2008. An Investigation into Server Parameter Selec-

tion for Hierarchical Fixed Priority Pre-emptive Systems. In 16th International

Conference on Real-Time and Network Systems (RTNS 2008).

[10] M. Joseph and P. Pandya. 1986. Finding Response Times in a Real-Time System.

Comput. J. 29, 5 (Jan. 1986), 390–395. https://doi.org/10.1093/comjnl/29.5.390

[11] M.H. Klein, J.P. Lehoczky, and R. Rajkumar. 1994. Rate-Monotonic Analysis

for Real-Time Industrial Computing. Computer 27, 1 (Jan. 1994), 24–33. https:

//doi.org/10.1109/2.248876

[12] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, andMichael González Har-

bour. 1993. A Practitioner’s Handbook for Real-Time Analysis. Kluwer Academic

Publishers, USA.

[13] Tei-Wei Kuo and Ching-Hui Li. 1999. A Fixed-Priority-Driven Open Environment

for Real-Time Applications. In Proceedings 20th IEEE Real-Time Systems Sympo-

sium (Cat. No.99CB37054). 256–267. https://doi.org/10.1109/REAL.1999.818851

[14] J. Lehoczky, L. Sha, and Y. Ding. 1989. The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior. In [1989] Proceedings. Real-

Time Systems Symposium. 166–171. https://doi.org/10.1109/REAL.1989.63567

[15] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. 1987. Enhanced Aperiodic

Responsiveness in Hard Real-Time Environments. In Proceedings of the 8th IEEE

Real-Time Systems Symposium (RTSS ’87), December 1-3, 1987, San Jose, Califorinia,

USA. IEEE Computer Society, 261–270.

[16] G. Lipari and E. Bini. 2003. Resource Partitioning among Real-Time Applications.

In 15th Euromicro Conference on Real-Time Systems, 2003. Proceedings. 151–158.

https://doi.org/10.1109/EMRTS.2003.1212738

[17] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.

https://doi.org/10.1145/321738.321743

[18] Jorge Martinez, Dakshina Dasari, Arne Hamann, Ignacio Sañudo, and Marko

Bertogna. 2020. Exact Response Time Analysis of Fixed Priority Systems Based

on Sporadic Servers. Journal of Systems Architecture 110 (Nov. 2020), 101836.

https://doi.org/10.1016/j.sysarc.2020.101836

[19] C.W. Mercer, S. Savage, and H. Tokuda. 1993. Processor Capacity Reserves: An

Abstraction for Managing Processor Usage. In Proceedings of IEEE 4th Workshop

on Workstation Operating Systems. WWOS-III. 129–134. https://doi.org/10.1109/

WWOS.1993.348160

[20] Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and Enrico

Bini. 2015. Hard Real-Time Guarantees in Feedback-Based Resource Reservations.

Real-Time Systems 51, 3 (June 2015), 221–246. https://doi.org/10.1007/s11241-

015-9224-1

[21] S. Saewong, R.R. Rajkumar, J.P. Lehoczky, and M.H. Klein. 2002. Analysis of

Hierarchical Fixed-Priority Scheduling. In Proceedings 14th Euromicro Conference

on Real-Time Systems. Euromicro RTS 2002. 152–160. https://doi.org/10.1109/

EMRTS.2002.1019197

[22] Lui Sha, R. Rajkumar, and S.S. Sathaye. 1994. Generalized Rate-Monotonic Sched-

uling Theory: A Framework for Developing Real-Time Systems. Proc. IEEE 82, 1

(Jan. 1994), 68–82. https://doi.org/10.1109/5.259427

[23] Brinkley Sprunt, Lui Sha, and John Lehoczky. 1989. Aperiodic Task Scheduling

for Hard-Real-Time Systems. Real-Time Systems 1, 1 (June 1989), 27–60. https:

//doi.org/10.1007/BF02341920

[24] Mark Stanovich, Theodore P. Baker, An-I Wang, and Michael Gonzalez Harbour.

2010. Defects of the POSIX Sporadic Server and How to Correct Them. In

2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium.

35–45. https://doi.org/10.1109/RTAS.2010.34

[25] Martin Stigge and Wang Yi. 2015. Graph-Based Models for Real-Time Workload:

A Survey. Real-Time Systems 51, 5 (Sept. 2015), 602–636. https://doi.org/10.1007/

s11241-015-9234-z

[26] J. K. Strosnider, J. P. Lehoczky, and Lui Sha. 1995. The Deferrable Server Algorithm

for Enhanced Aperiodic Responsiveness in Hard Real-Time Environments. IEEE

Trans. Comput. 44, 1 (Jan. 1995), 73–91. https://doi.org/10.1109/12.368008

[27] Mohit Tawarmalani and Nikolaos V. Sahinidis. 2002. Convexification and Global

Optimization in Continuous and Mixed-Integer Nonlinear Programming. Non-

convex Optimization and Its Applications, Vol. 65. Springer US, Boston, MA.

https://doi.org/10.1007/978-1-4757-3532-1

https://doi.org/10.1109/IEEESTD.2008.4694976
https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1007/BF01094342
https://doi.org/10.1109/REAL.1999.818829
https://doi.org/10.1007/978-1-4614-1927-3_15
https://doi.org/10.1007/978-1-4614-1927-3_1
https://doi.org/10.1007/978-1-4614-1927-3_1
https://doi.org/10.1007/978-3-540-75454-1_9
https://doi.org/10.1007/978-3-540-75454-1_9
https://doi.org/10.1109/RTSS.2005.25
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1109/2.248876
https://doi.org/10.1109/2.248876
https://doi.org/10.1109/REAL.1999.818851
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/EMRTS.2003.1212738
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/j.sysarc.2020.101836
https://doi.org/10.1109/WWOS.1993.348160
https://doi.org/10.1109/WWOS.1993.348160
https://doi.org/10.1007/s11241-015-9224-1
https://doi.org/10.1007/s11241-015-9224-1
https://doi.org/10.1109/EMRTS.2002.1019197
https://doi.org/10.1109/EMRTS.2002.1019197
https://doi.org/10.1109/5.259427
https://doi.org/10.1007/BF02341920
https://doi.org/10.1007/BF02341920
https://doi.org/10.1109/RTAS.2010.34
https://doi.org/10.1007/s11241-015-9234-z
https://doi.org/10.1007/s11241-015-9234-z
https://doi.org/10.1109/12.368008
https://doi.org/10.1007/978-1-4757-3532-1

	Abstract
	1 Introduction
	1.1 FP systems and servers: model and terms
	1.2 Previous work on dimensioning FP servers
	1.3 Some observations and the problem statement

	2 More Background & Assumptions
	3 Maximize budget and utilization separately
	4 A tractable special case of dimensioning
	5 Dimensioning in General
	5.1 A dual of Dimensioning
	5.2 An example demonstrating the use of the two MINLPs

	6 Implementation issues
	6.1 A Regular Sporadic Server
	6.2 An Extended Sporadic Server

	7 Conclusion
	Acknowledgments
	References

