
Fixed-Parameter Analysis of Preemptive
Uniprocessor Scheduling Problems

Sanjoy Baruah
Washington University in St. Louis

baruah@wustl.edu

Pontus Ekberg
Uppsala University

pontus.ekberg@it.uu.se

Abhishek Singh
Washington University in St. Louis
abhishek.s@wustl.edu

Abstract—The algorithmic technique of fixed-parameter analysis
of computationally intractable problems seeks to obtain a deeper
understanding of the underlying causes of the intractability, with
a view to identifying conditions under which the problem becomes
tractable. We apply fixed-parameter analysis to the fixed-priority
and EDF scheduling of recurrent (periodic and sporadic) task
systems upon preemptive uniprocessor platforms.

I. INTRODUCTION

Many (arguably, most) important and interesting real-
time schedulability analysis problems are computationally
intractable—NP-hard or coNP-hard—even upon preemptive
uniprocessor platforms (see, e.g., [1] for an overview). Some-
what paradoxically, it has widely been observed that many of
these problems seem to be solved quite efficiently for many
(though not all) of the kinds of systems that are commonly
encountered in practice. The objective of the research reported
in this paper is to investigate this paradox, primarily through the
algorithmic analysis technique of fixed-parameter analysis [2]–
[4] (see [5] for a short review) which has recently become
the focus of a good deal of attention in the algorithms
community. Fixed-parameter analysis of a computationally
intractable problem seeks to identify the problem parameters
that are responsible for the combinatorial explosion arising in
algorithms for solving the problem. The motivation for doing
so, as articulated in [6], is that “it is hoped then that these
parameters (in the concrete application behind the problem
under consideration) might take only relatively small values,
so that the exponential growth becomes affordable”.

In exploring the applicability of fixed-parameter algorithms
for some particular application domain, one of the most
important issues to be resolved is identifying the parameters
that are subject to fixed-parameter analysis, i.e., that are ‘fixed’
in the analysis. Many factors play a role in making this
decision. First and foremost for our purposes, the choice of
parameters should be meaningful from the perspective of the
problem application domain, in the sense that it is reasonable to
consider problem instances in which these parameters take on
relatively small values. These parameters should also facilitate
the design of efficient algorithms, and hopefully be useful
in providing insights into the inherent complexity of the

Funded in part by the US National Science Foundation under Grants CPS-
1932530 and CNS-2141256, and by the Swedish Research Council under
Grant 2018-04446. Authors listed in alphabetical order; all contributed equally.

underlying problem.1 Additionally, one would like to restrict
fewer parameters rather than more: the fewer the number
of parameters that are required to take on relatively small
values in order for a given fixed-parameter algorithm to be
considered tractable, the more general the applicability of this
algorithm. We will see that while the choice of parameter may
be somewhat obvious in some cases (e.g., in multiprocessor
scheduling it seems quite natural to consider the number of
processors to be a parameter), in some cases it is not quite as
straightforward (an example: we will see, in a later section,
that considering the ratio of the largest period of any task in a
task system to the smallest period as the parameter provides
a satisfactory explanation for the excellent performance that
has been observed in practice of the widely-used response-
time analysis (RTA) [8], [9] and processor-demand analysis
(PDA) [10] schedulability tests).

Significance. Fixed-parameter analysis has proved helpful
in making advances in other domains in which some very
basic problems are computationally intractable. Recently,
researchers have begun exploring the applicability of fixed-
parameter analysis for “traditional” scheduling problems of
the kind studied in the Operations Research community —
e.g., Mnich and Wiese [11], [12] have applied the lens of
fixed-parameter analysis to the traditional scheduling problems
of non-preemptive makespan minimization on an arbitrary
number of identical machines or a bounded number of unrelated
machines; scheduling with rejection; and a profit maximization
variant of the Generalized Scheduling Problem defined by
Bansal and Pruhs [13]. We believe that it is high time that
the real-time scheduling theory community also considers this
analysis technique, with the dual objectives of better under-
standing some of our intractable basic scheduling problems, and
developing design guidelines that, upon identifying inherent
sources of intractability, specify how these should be avoided
in the systems we build.

This work. The larger algorithms community has begun
looking upon fixed-parameter analysis as a promising means
of dealing with inherently intractable problems; it seems only

1An article [7] reviewing some early works on fixed-parameter analysis had
observed that “the choice of parameters can make a problem interesting or
boring, tractable or non-tractable, and even tractable but for mundane reasons”;
we seek to identify parameters that render our scheduling problems tractable,
for reasons that are not mundane.

proper that the real-time scheduling theory community does
likewise. Preemptive uniprocessor schedulability analysis of
periodic and sporadic task systems are the building blocks of
much of real-time scheduling theory (see, e.g. [8], [9], [14]–
[17]—this is only a short representative sample). But these
seminal papers were all written before fixed-parameter analysis
was even proposed [2], [3] as a rigorous analysis method
in the mid-1990s. In this paper, we report on our findings
and experiences in applying fixed-parameter analysis to such
foundational schedulability analysis problems. We claim the
following specific contributions.
1) The framework of fixed-parameter analysis has recently

been considerably enriched (see [5], published in 2021, for
a short review of recent developments). However, to our
knowledge, there is no prior research explicitly applying this
rich recently developed framework to real-time scheduling
problems; our first contribution is to have initiated this. We
hope that the experiences we report here will encourage
other members of the real-time research community to
also dive in, and that our brief introduction to the topic
(Section III) will lower the barrier to entry.

2) Via the application of fixed-parameter analysis, we have
obtained some explanations for the excellent perceived
performance in practice of widely-used schedulability-
analysis algorithms (such as RTA [8], [9] and PDA [10])
under a variety of circumstances. For other circumstances,
we have identified other schedulability analysis algorithms
that are not quite as widely known or used (e.g., the
HET algorithm [18], [19], or ones based on integer linear
programming), which may exhibit superior properties with
increasing problem size.

3) Fixed-parameter analysis includes its own notions of lower
bounds—characterizations of problems for which fixed-
parameter analysis may not yield better algorithms. We
provide a brief review of lower bound theory for fixed-
parameter analysis (Section VI) and apply this theory to
establish lower bounds for several well-known schedulability
analysis problems.

Organization. The remainder of this paper is organized in the
following manner. In Section II we briefly present the real-time
task model that we will be using in the remainder of this paper.
In Section III we provide a very brief introduction to some
of the more important concepts of fixed-parameter analysis,
from a real-time scheduling perspective. In Section IV we
apply fixed-parameter analysis to uniprocessor fixed-priority
schedulability analysis; in Section V, we do likewise for
uniprocessor EDF schedulability analysis. In Section VI we
provide a brief introduction to the theory of lower bounds
for fixed-parameter analysis and establish lower bounds for
a variety of real-time scheduling problems. We conclude in
Section VII by placing this work within a larger context of
research on real-time scheduling theory.

II. WORKLOAD MODEL, AND SOME BACKGROUND

We consider the problem of scheduling a real-time system Γ
that is modeled as a collection of independent recurrent tasks,

upon a preemptive uniprocessor. Each task τi is characterized
by a worst-case execution time (WCET) parameter Ci, denoting
the maximum duration that a job of τi would take to complete
execution on a processor; a relative deadline Di; and a period
Ti. Task τi may release a potentially unbounded sequence
of jobs during any given execution of the task system; each
job released by τi is required to complete execution within a
duration Di of its release time. We will consider systems of
both sporadic and periodic tasks: for sporadic tasks, the period
Ti represents the minimum duration between the release of
successive jobs while for periodic tasks, Ti represents the exact
duration between the release of successive jobs. A periodic
task τi is additionally characterized by an initial release time
or offset Oi, and hence releases jobs at instants Oi + k × Ti

for all k ∈ N.

Synchronous and asynchronous periodic task systems.
Periodic task systems may be further characterized as being
synchronous if they satisfy the additional constraint that their
initial release times are all equal (in which case they are
typically assumed to be equal to zero and omitted from the
specifications). Periodic task systems that are not synchronous,
i.e., in which all tasks do not have equal initial release times,
are called asynchronous periodic task systems. (Synchronous
periodic and sporadic task systems have been observed [20]
to be remarkably similar from a uniprocessor schedulability
analysis perspective; we will therefore frequently use the
phrase ‘synchronous task systems’ to include both synchronous
periodic and sporadic task systems.)

EDF and FP scheduling. We will consider the preemptive
scheduling of recurrent task systems on a shared processor
where:
1) priorities are dynamically assigned to jobs during runtime

such that jobs with earlier deadlines receive higher priorities;
or

2) priorities are statically assigned to tasks before runtime.
The former case is referred to as Earliest Deadline First (EDF)
scheduling, and the latter case is referred to as Fixed Priority
(FP) scheduling.

Implicit-, constrained- and arbitrary-deadline systems.
Periodic or sporadic task systems are said to be implicit-
deadline if Di = Ti for all tasks (the Di parameter is typically
dropped from the specification of tasks in such systems), and
constrained-deadline if Di ≤ Ti for all tasks. If no such
restrictions are placed on the Di and Ti parameters (i.e., we
may have Di > Ti), then the task system is said to be arbitrary-
deadline.

Bounded-utilization systems. The ratio of the WCET parame-
ter of a recurrent task to its period is termed its utilization. The
(system) utilization U(Γ) of task system Γ is defined to be the
sum of the utilizations of all tasks in Γ. A bounded-utilization
system Γ satisfies the constraint that its utilization is guaranteed
to be no larger than a specified constant that is strictly smaller
than 1.

III. FIXED-PARAMETER ANALYSIS: A BRIEF
INTRODUCTION

In this section we provide a brief introduction to some of
the main ideas underlying fixed-parameter analysis. We do
not intend to be comprehensive (or completely rigorous and
formal), and as far as possible draw upon examples from real-
time scheduling problems with which we expect the reader is
already very familiar.

In the classical study of algorithms and complexity, the
running time of an algorithm is stated as a function of the
size of its input. In the parameterized study of algorithms and
complexity, the running time of an algorithm is stated as a
function of both the size of the input and a parameter which
is a numerical value that depends on the input and is obtained
via a parameterization (defined next).

Definition 1 (parameterization). A parameterization for a
problem is a computable function that accepts as input any
problem instance and returns an integer:

κ : {problem instances} → N

Consider, as an example problem, the preemptive uniproces-
sor fixed-priority (FP) schedulability analysis of constrained-
deadline synchronous task systems – this is the schedulability
analysis problem that is solved by Response-Time Analysis
(RTA) [8], [9]. For this problem, any constrained-deadline
synchronous task system Γ constitutes a problem instance.
We may define many parameterizations for this problem. For
instance, a particular parameterization of Γ may return the
number of tasks in Γ; another may return the largest-valued
parameter in the specification of Γ; a third, the ratio of the
largest period to the smallest period of tasks in Γ, and so on
(these and a couple of other possible parameterizations are
enumerated in Table I. 2)

While Definition 1 is very liberal allowing any computable
function to be considered a parameterization, some parame-
terizations are more meaningful than others from a practical
perspective: for example, while it is perfectly correct to define
a parameterization that returns zero (one, respectively) if the
number of tasks in the instance is odd (even, resp.), it is difficult
to see such a parameterization playing a meaningful role in
schedulability analysis.

Definition 2 (xp-algorithm). For a given problem P and a
parameterization κ for P , an xp-algorithm for (P, κ) solves
any instance x in running time O(f(κ(x))×|x|g(κ(x))), where
f(·) and g(·) are some computable functions on integers.

Note that for any particular fixed value k = κ(x), both f(k)
and g(k) are also fixed, and so an xp-algorithm runs in time
polynomial in the size of the input |x| (the size is normally
the number of bits needed to represent the instance), for each
fixed value k of the parameter. The xp stands for “slice-wise
polynomial” and refers to this fact that every slice of the

2Some subtle issues arise in the use of parameterization κ3—this will be
discussed in the Appendix (but may be ignored for now).

problem that is defined by a particular value k = κ(x) is
solved in polynomial time.
Example 1. Consider the multiprocessor problem of partitioned
EDF scheduling of a given collection Γ of implicit-deadline
tasks upon m processors (a problem instance here is the ordered
pair (Γ,m)). It is widely known that this problem is equivalent
to the BIN-PACKING problem [21, Problem SR1] and thus
NP-hard. There is no xp-algorithm for this problem under the
parameterization that returns the number of processors (since
BIN-PACKING is NP-hard even upon two processors). However
since exhaustively considering all possible partitionings of the
tasks amongst the m processors will require us to check m|Γ|

possibilities, each in polynomial time, such an ‘exhaustively-
enumerate and test’ approach is an xp-algorithm under a
parameterization that returns |Γ|, the number of tasks in Γ.

Example 1 indicates that the choice of parameterizations is
crucial from two perspectives. First, it reveals that a problem
may have an xp-algorithm under some parameterizations but
not others. Second, it offers strong evidence that the mere
presence of an xp-algorithm is not in itself sufficient to ensure
that a practically efficient algorithm exists: the ‘exhaustively-
enumerate and test’ xp-algorithm of Example 1 would not be
considered practical even for relatively small values of the
parameter.

Although the existence of an xp-algorithm is, from the
perspective of fixed-parameter analysis, better than there not
being such an algorithm, the presence of the parameter value as
an exponent to the problem instance size (|x|) means that xp-
algorithms are often practically significant only for very small
values of the parameter. The parameter value may not appear
as an exponent to the problem instance size in fpt-algorithms,
defined next (fpt stands for “fixed-parameter tractable”):

Definition 3 (fpt-algorithm). For a given problem P and a
parameterization κ for P , an fpt-algorithm for (P, κ) solves
any instance x in running time O(f(κ(x))× |x|c), where f(·)
is any computable function and c is a constant number.

Notice that the exponent to the problem instance size is required
to be a constant that does not depend on the parameter; rather,
the impact of the parameter is contained in the multiplicative
term f(κ(x)). It is primarily for this reason that fpt-algorithms
are considered particularly efficient (while xp-algorithms are
not necessarily so) in fixed-parameter analysis. Since the
running time of an fpt-algorithm is of the form f(κ(x))×|x|c,
there are usually two clear directions for optimizing its
performance:
• Reduce f , thereby reducing the dependence of the running

time upon the parameter.
• Reduce c, thereby reducing the dependence of the running

time upon the size of the input.
Several of the lower bounds that we will present in Section VI
establish that although xp-algorithms may exist for certain
problems, fpt-algorithms for these problems are unlikely to
exist.

TABLE I
SOME POSSIBLE PARAMETERIZATIONS FOR PERIODIC TASK SYSTEMS.

Label Meaning Formal Meaning

κ1 number of tasks, a.k.a, cardinality of Γ |Γ|
κ2 number of (offset, deadline, period) triples, a.k.a., variety of Γ |{(Oi, Di, Ti) | τi ∈ Γ}|
κ3 largest task parameter maxτi∈Γ{Ci, Di, Ti}
κ4 number of periods |{Ti | τi ∈ Γ}|
κ5 ratio of the largest period to the smallest period

⌈
(maxτi∈Γ{Ti})/(minτi∈Γ{Ti})

⌉
Although Definition 3 does not restrict the form of the

function f(·) other than that it be computable, of course, f(·)
should not grow too quickly with increasing parameter values
for an fpt-algorithm to be considered meaningful in practice.3

We will see several schedulability-analysis algorithms that have
fpt-algorithms for meaningful parameterizations (such as the
parameterizations listed in Table I) in later sections; the function
f(·) does not grow particularly rapidly with the parameter in
all these fpt-algorithms.

The study of parameterized algorithms has yielded a diverse
range of techniques: kernelization, bounded-depth search trees,
iterative compression, dynamic programming on structures of
bounded treewidth, to name a few [22]. The techniques used
in the current document are quite elementary in most cases; in
some cases, we use a non-trivial result of Lenstra for solving
ILPs in fixed dimension but the applications of the result
are quite straightforward, and the descriptions of its use are
complete and self-contained.

IV. FIXED-PRIORITY SCHEDULING OF SYNCHRONOUS
CONSTRAINED-DEADLINE SYSTEMS

In this section, we examine the FP-scheduling of constrained-
deadline synchronous (i.e., either synchronous periodic or
sporadic) task systems through the lens of fixed-parameter
analysis. Let Γ denote a constrained-deadline synchronous
task system comprising the n tasks τ1, τ2, . . . , τn. We assume,
without loss of generality, that the tasks in Γ are indexed in
decreasing priority order: τi has greater priority than τi+1 for
all i, 1 ≤ i < n. Let us define Tmin, Tmax, and Dmax as
follows

Tmin = min
τi∈Γ
{Ti}

Tmax = max
τi∈Γ
{Ti}

Dmax = max
τi∈Γ
{Di}

As we had stated earlier, Response-Time Analysis (RTA) [8],
[9] is widely used for the schedulability analysis of constrained-
deadline synchronous systems. It is very straightforward to

3This situation is somewhat analogous to the definition of the tractable
complexity class P as being all decision problems for which polynomial-time
algorithms exist: an algorithm with running time a degree-100 polynomial is
not likely to be considered practically meaningful.

show that the running time of RTA on a task instance Γ with
n tasks is O(n2 ×Dmax), which can be written as

f(Dmax)× |Γ|2

Theorem 1 immediately follows:

Theorem 1. If the parameter is κ3, the largest number in the
specification of the task system, then RTA is an fpt-algorithm
for the fixed-priority schedulability analysis of constrained-
deadline synchronous systems.

(Notice that in this case, the f(·) function in the definition
of fpt-algorithms (Definition 3) is just the identity function;
this is a very slow-growing f(·), but we should remember that
linear in the value of a number is exponential in the number
of bits used to represent that number in the input.)

Theorem 1 above is essentially a restatement, in fixed-
parameter analysis terminology, of the well-known result that
RTA has pseudo-polynomial running time. In Theorem 2 below
we apply the fixed-parameter analysis lens to obtain additional
insight on RTA’s performance: the dependence of the running
time of RTA upon κ5, the ratio of the largest to the smallest
periods in the problem instance. Theorem 2 tells us that if κ5 is
small for a given task system Γ, RTA will be very efficient on
Γ even though the underlying schedulability analysis problem
is NP-hard [23]. (We will also see that f(·) here is the identity
function, i.e., the dependence of the running time on the
parameterization is linear. Hence, the combinatorial explosion
inherent in the underlying NP-hard problem is contained in
the value of the parameter: Tmax/Tmin must be very large for
hard instances.)

Theorem 2. If the parameter is κ5 = ⌈(Tmax/Tmin)⌉, then
RTA is an fpt-algorithm for the fixed-priority schedulability
analysis of constrained-deadline synchronous systems.

Proof. Under RTA, the worst-case response time Ri of task τi
is given by the smallest non-negative solution to the recurrence

Ri = Ci +
∑

1⩽j<i

⌈
Ri

Tj

⌉
Cj (1)

Now it is evident that the value of at least one ceiling expression
(a “⌈·⌉”) increases in each iteration of Recurrence 1 (this is
also stated formally as Theorem 1 in [24]). If no solution to the
recurrence of value ≤ Di is found, then we cease evaluating it
any further, and conclude that τi cannot be guaranteed to meet

its deadline; hence, the largest value of a ceiling expression
is ⌈Di/Tmin⌉. Since there are (i − 1) ceiling expressions, it
follows that Recurrence 1 will execute no more than (i −
1) × ⌈(Di/Tmin)⌉ times. The total number of iterations of
Recurrence 1 needed for RTA to determine the schedulability
of all n tasks in task system Γ is therefore no more than

n∑
i=1

(
(i− 1)×

⌈
Di

Tmin

⌉)
≤

n∑
i=1

(
(i− 1)×

⌈
Dmax

Tmin

⌉)
=

⌈
Dmax

Tmin

⌉
×

n∑
i=1

(i− 1)

=

⌈
Dmax

Tmin

⌉
×O(n2)

Since each iteration of Recurrence 1 clearly involves no more
than O(n) arithmetic operations the total number of arithmetic
operations needed to complete these ⌈(Dmax/Tmin)⌉ ×O(n2)
operations is⌈

Dmax

Tmin

⌉
×O(n3) ≤

⌈
Tmax

Tmin

⌉
×O(n3)

where we simplified using Dmax ≤ Tmax for a constrained-
deadline sporadic task system Γ. But the expression above can
be written as

f

(⌈
Tmax

Tmin

⌉)
×O(n3) (2)

where f(·) is the identity function and which fits Definition 3’s
specification of the running time of an fpt-algorithm.

(In this case as well, the f(·) function in the definition of
fpt-algorithms (Definition 3) is the identity function.)

We have seen that RTA is an fpt-algorithm for the parameters
κ3 and κ5. When we choose any of κ1, κ2 or κ4 as the
parameters, however, straightforward implementations of RTA
are no longer fpt-algorithms for the fixed-priority schedulability
analysis of constrained-deadline synchronous systems, as
illustrated in the following example.

Example 2. Consider the following system Γ of two tasks,
where y is any positive integer:4

Ci Di Ti

τ1 (y − 1) y y
τ2 y D2 ≥ y2 T2 ≥ D2

In computing the response time R2 of task τ2, most implemen-
tations of RTA would initialize R2 ← y and successively take
on the values 2y−1, 3y−2, 4y−3, . . . until finally converging
at y2. Hence, the straightforward implementation of RTA would
have Θ(y) running time on the task system Γ in the example

4Notice that for this instance the ratio of the largest to the smallest period –
the parameter κ5– is at least y2/y or y. Expression 2 in the proof of Theorem 2
still yields a pseudo-polynomial bound for RTA on this instance.

above. However, its parameters κ1, κ2, and κ4 are each equal to
two; therefore, RTA’s running time, which is pseudo-polynomial
in the representation of Γ, cannot be represented in the form
needed by Definition 3 and therefore does not constitute an
fpt-algorithm with respect to these parameters.

The HET algorithm [18], [19]. An algorithm called the
Hyperplanes Exact Test (HET) has also been proposed for
fixed-priority schedulability analysis of constrained-deadline
synchronous systems [18], [19]. We will show that HET is an
fpt-algorithm with respect to parameters κ1, κ2, κ3, κ4, and
κ5.

Recall that τi is guaranteed to always meet its deadline if
and only if there exists a t ∈ [0, Di] that satisfies

Ci +
∑

1⩽j<i

⌈
t

Tj

⌉
Cj ⩽ t. (3)

The correctness of HET depends on the observation that if tasks
τ1, . . . , τi−1 are guaranteed to always meet their deadlines then
there is some t ∈ [0, Di] satisfying Inequality 3 if and only if
there is such a t in the set Pi−1(Di), where Pj(t) is defined
inductively as

P0(t) = {t},

Pj(t) = Pj−1

(⌊
t

Tj

⌋
Tj

)
∪ Pj−1(t), if j > 1.

It was also shown that the cardinality of Pi(t) is at most 2i

for any t [19, p. 1466]; therefore, Pi−1(Di) has at most 2i−1

elements. Testing inequality 3 for each element takes O(i)
arithmetic operations, from which it follows that determining
whether τi is guaranteed to always meet its deadline takes at
most 2i−1 ×O(i) arithmetic operations.

The FP-schedulability analysis of Γ requires us to determine
whether each of the n = |Γ| tasks τ1, τ2, . . . , τn in Γ is guar-
anteed to meet its deadline. Applying the above algorithm for
each task in order would therefore take

∑n
i=1

(
2i−1 ×O(i)

)
arithmetic operations, which is clearly bounded from above by

2n ×O(n2) . (4)

Theorem 3 follows.

Theorem 3. If the parameter is κ1, the cardinality of Γ, then
HET is an fpt-algorithm for the fixed-priority schedulability
analysis of constrained-deadline synchronous systems.

Notice that having ni tasks in Γ with exactly the same
parameters (Ci, Di, Ti) (and the same priority) is functionally
equivalent, in terms of preemptive FP-schedulability, to having
a single task with the same relative deadline Di and the same
period Ti, and with the Ci parameter inflated by a factor ni;
Theorem 4 below immediately follows from Theorem 3.

Theorem 4. If the parameter is κ2, the variety of Γ, then HET
is an fpt-algorithm for the fixed-priority schedulability analysis
of constrained-deadline synchronous systems.

We can also extend the result of Theorem 3 to be applicable
when the parameter is κ4, the number of distinct periods in

Γ. We observe that in FP scheduling, the relative deadline
parameters of tasks of higher priority than τi’s do not play a
role in determining whether τi is guaranteed to always meet
its deadline. Hence, when seeking to determine whether τi
is guaranteed to always meet its deadline (as in the proof of
Theorem 3), we could effectively “merge” all higher priority
tasks of the same period but different deadlines into a single
task. Upon doing this, it may be verified that the arguments of
the proof of Theorem 3 continue to hold, with the modification
that the cardinality of Pi−1(Di) is always no greater than 2κ4 ,
and hence the total number of arithmetic operations needed for
the FP-schedulability analysis of Γ (the analog of Expression 4)
is at most

2κ4 ×O(n2). (5)

Theorem 5. If the parameter is κ4, the number of periods, then
HET is an fpt-algorithm for the fixed-priority schedulability
analysis of constrained-deadline synchronous systems.

Finally, from the definition of set Pj(t), it can be shown by
induction that

Pi−1(Di) ⊆ {Di} ∪ {kTj | k ∈ N+, j < i, kTj ≤ Di}

Therefore, Pi−1(Di) has cardinality

O(n× ⌈Dmax/Tmin⌉)

Using the definitions of κ3 and κ5, it immediately follows
that the cardinality of Pi−1(Di) also is O(nκ3) and O(nκ5).
Applying HET for one task therefore takes O(n2κ3) and
O(n2κ5) arithmetic operations. Thus, the total number of
arithmetic operations performed by HET is O(n3κ3) and
O(n3κ5).

Theorem 6. If the parameter is κ3 or κ5, then HET is an
fpt-algorithm for the fixed-priority schedulability analysis of
constrained-deadline synchronous systems.

We summarize the results for fixed-priority schedulability
analysis in the following table:

param. meaning fpt-algorithm

κ1 cardinality HET (Thm 3)
κ2 variety HET (Thm 4)
κ3 largest number RTA (Thm 1) and HET (Thm 6)
κ4 no. of distinct periods HET (Thm 5)
κ5 max ratio of periods RTA (Thm 2) and HET (Thm 6)

V. EDF SCHEDULING

In this section we conduct fixed-parameter analyses of EDF
schedulability for arbitrary-deadline periodic task systems and
constrained-deadline synchronous task systems.

We begin with an examination of the EDF scheduling of
arbitrary-deadline periodic task systems, parameterized by their
κ2, the variety of Γ. Recall from Table I that the variety of Γ

is the number of distinct (offset, deadline, period) triples in
the system:

κ2 = |{(Oi, Di, Ti) | τi ∈ Γ}|

We refer to each distinct triple as a kind of task. There are
κ2 kinds of tasks in the system. For each j ∈ {1, 2, . . . , κ2},
we assume that there are nj tasks of the j’th kind in Γ. Thus,
there are

∑κ2

j=1 nj tasks in Γ.
An fpt-algorithm is known for the ILP feasibility problem

parameterized by the number of variables: building upon prior
work by Lenstra [25] and Kannan [26], Frank and Tardos [27]
have derived an algorithm for determining whether an ILP
is feasible that uses O(p2.5p+o(p) × L) arithmetic operations,
where p is the number of integer variables and L is the size of
the representation of the ILP (see also the work of Eisenbrand et
al. [28]). The important observation here is that the occurrence
of p in the exponent is completely contained in the first term
and therefore O(p2.5p+o(p) × L) can be written as O(f(p)×
L). The problem of deciding whether a task system is not
EDF-schedulable has an integer programming formulation with
O(κ2) variables [29]. Moreover, the size of this formulation is
linearly bounded by the size of the representation of Γ, denoted
⟨Γ⟩. Thus, the Frank and Tardos [27] algorithm can solve
this particular ILP in O(f ′(κ2)× ⟨Γ⟩) arithmetic operations.
Theorem 7 follows.

Theorem 7. If the parameter is κ2, the variety of Γ, then the
EDF schedulability analysis of arbitrary-deadline periodic
systems can be solved by an fpt-algorithm consisting of
formulating the problem as an ILP [29] and solving the
formulation using the algorithm of Frank and Tardos [27].

An obvious corollary to Theorem 7 is that this algorithm is
also an fpt-algorithm for the EDF schedulability analysis of
arbitrary-deadline periodic systems with parameter κ1, the
cardinality of Γ.

A note. We point out that the statement of Theorem 7 above
both generalizes and refines [29, Theorem 3.5], which states
“For [. . .] task systems with a fixed number of distinct types of
tasks, the feasibility problem for one processor can be solved
in polynomial time”. Theorem 7 is first a generalization of this
result from polynomial-time algorithms to fpt-algorithms, and
also a refinement in the sense that [29, Theorem 3.5] leaves
open the possibility that the polynomial-time algorithm could
have had the parameter in the exponent (i.e., it could have
been an xp-algorithm rather than an fpt-algorithm).

Our remaining results for EDF-schedulability analysis are
for synchronous task systems only. For such task systems,
Processor Demand Analysis (PDA) [10] is an exact technique
for EDF-schedulability analysis upon preemptive uniprocessors.
This technique is based on the concept of the demand bound
function (dbf): for any synchronous task τi = (Ci, Di, Ti) and
any interval-duration t ≥ 0, dbf(τi, t) denotes the maximum
possible cumulative execution requirement by jobs of task
τi that both arrive in, and have their deadlines within, any
contiguous interval of duration t. The following formula for

computing dbf(τi, t) was derived in [10]:

dbf(τi, t) = max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
× Ci (6)

and it was shown that a necessary and sufficient condition for
Γ = {τ1, τ2, . . . , τn} to be EDF-schedulable on a preemptive
unit speed processor is that the following condition hold for
all integers t ≥ 0:

n∑
i=1

dbf(τi, t) ≤ t (7)

Letting H(Γ), U(Γ), and Tmax respectively denote the hyper-
period (i.e., the least common multiple of the period param-
eters), the system utilization, and the largest period of any
task in the task system Γ under consideration, it has been
shown [29], [30] that if Expression 7 is violated for any t, then
it is violated for some t that is no larger than

min

(
H(Γ),

(
U(Γ)

1− U(Γ)

)
× Tmax

)
(8)

If the utilization bound is some constant c < 1, then it
follows that the upper bound of Expression 8 is no larger
than (c/(1− c)) × Tmax. Thus, for each i, O(Tmax) values
of t need to be checked, and a total of O(Tmax × n) values
need to be checked. Since checking Condition 7 for a given t
requires O(n) arithmetic operations, PDA uses

O
(
Tmax × n2

)
arithmetic operations. Comparing this form with the one
specified (Definition 3) for fpt-algorithms, we conclude that

Theorem 8. If the parameter is κ3, the largest number in the
specification of the task system, then PDA is an fpt-algorithm
for the EDF schedulability analysis of bounded-utilization
constrained-deadline synchronous systems.

Similar to Theorem 1, the above theorem is a restatement,
in the terminology of fixed-parameter analysis, of the well-
known result [10] that PDA runs in pseudo-polynomial time
for bounded-utilization synchronous systems.

It was also shown in [10] that Condition 7 need only be
checked for values of t that are of the form t = (k × Ti +Di)
for some non-negative integer k and some i, 1 ≤ i ≤ n. By
this we can utilize the stronger observation that for each i, only
O(⌈Tmax/Tmin⌉) values of t need to be checked to conclude
that PDA uses

O

(⌈
Tmax

Tmin

⌉
× n2

)
arithmetic operations. Theorem 9 follows.

Theorem 9. If the parameter is κ5 = ⌈Tmax/Tmin⌉, then
PDA is an fpt-algorithm for the EDF schedulability analysis of
bounded-utilization constrained-deadline synchronous systems.

Our final parameterized algorithm for EDF schedulability
analysis of synchronous task systems is for the parameterization
κ4, the number of distinct periods in the task system Γ. We

tf

xiT
(i)

(
xiT

(i)+D
(i)
ℓi

) (
xiT

(i)+D
(i)
ℓi+1

)
· · · · · ·

(xi+1)T (i)

Fig. 1. Notation for the xp-algorithm for EDF-schedulability of synchronous
systems with the parameterization number of distinct periods.

were not able to obtain an fpt-algorithm for this problem; we
present an xp-algorithm instead.

First, we find it convenient to introduce some additional
notation for representing the task system. Let the periods in Γ be
denoted by T (1), T (2), . . . , T (κ4). For each j ∈ {1, 2, . . . , κ4},

• Let nj denote the number of tasks with period T (j) (hence,
Γ has a total of n = (n1 + n2 + · · ·+ nκ4

) tasks).
• Let C

(j)
1 , C

(j)
2 , . . . , C

(j)
nj denote the execution require-

ments and D
(j)
1 , D

(j)
2 , . . . , D

(j)
nj the corresponding relative

deadline parameters for the nj tasks with period T (j).
• We assume without loss of generality that tasks with

equal period are indexed according to relative deadline:
D

(j)
1 ≤ D

(j)
2 ≤ · · · ≤ D

(j)
nj .

Suppose that the instance is unschedulable, and let tf denote
the earliest instant at which a deadline is missed. Let xi denote
the number of complete periods of T (i) that are fully within
[0, tf]

xi =

⌊
tf
Ti

⌋
Let ℓ1, ℓ2, . . . ℓκ4

denote non-negative integers such that out of
the ni jobs with period T (i) that are released at time xiT

(i),
ℓi jobs have deadlines ≤ tf—see Figure 1. From the figure,
it is evident that the deadline miss at tf occurs if and only if
a deadline miss at tf occurs for the task system created by
replacing the first ℓi tasks with period T (i) by the task ℓi∑

j=1

C
(i)
j , D

(i)
ℓi
, T (i)

 ,

and by replacing the next ni − ℓi tasks by the task ni∑
j=ℓi+1

C
(i)
j , T (i), T (i)

for each i ∈ {1, 2, . . . , κ4}. The variety of this new task
system is at most 2κ4 since there are κ4 periods, at most two
deadlines per period, and all offsets are 0. Using Theorem 7,
its schedulability can be determined by an fpt-algorithm
for parameter κ4. However, we do not know the values of
ℓ1, ℓ2, . . . , ℓκ4

that cause the deadline miss. We can simply try
all

(n1 + 1)× (n2 + 1)× · · · × (nκ4 + 1) = O(nκ4)

possible values for the vector ℓ. The overall algorithm consists
of the following parts:

• Nondeterministically guess the vector ℓ which causes the
deadline miss in O(nκ4) steps.

• Create the reduced task system, using ℓ, as described
above, using O(n) arithmetic operations.

• Run the fpt-algorithm described in Theorem 7 on the
reduced task system. The fpt-algorithm uses O(f ′(κ4)×
⟨Γ⟩) arithmetic operations.

The overall algorithm needs

O(nκ4 × f ′(κ4)× ⟨Γ⟩ × n)

arithmetic operations. While the above is unlikely to be a
practical algorithm, it matches the requirement on running
time for an algorithm to be considered an xp-algorithm (see
Definition 2); Theorem 10 follows.

Theorem 10. If the parameter is κ4, the number of periods,
then there exists an xp-algorithm for the EDF-schedulability
analysis of synchronous systems.

The various results concerning EDF-schedulability that we
have presented in this section are summarized in the table
below:

param meaning algorithm

κ1 cardinality an fpt-algorithm (Thm 7)
κ2 variety an fpt-algorithm (Thm 7)
κ3 largest number PDA is an fpt-algorithm for synch (Thm 8)
κ4 no. of periods an xp-algorithm for synch (Thm 10)
κ5 max ratio of periods PDA is an fpt-algorithm for synch (Thm 9)

VI. INTRACTABILITY OF PARAMETERIZED PROBLEMS

We have seen that fixed-parameter analysis of problems
can be used to show how some problems are tractable if
some given parameter is small enough, even though the same
problems could be, for example, NP-hard in the classical (non-
parameterized) sense. We have seen examples of (co)NP-hard
scheduling problems that are fixed-parameter tractable for some
different natural parameterizations.

Parameterized complexity theory has also developed methods
for showing (or at least for giving strong evidence) that certain
problems are not tractable despite a given parameter being
small. In this section we will review some of the complexity
classes in parameterized complexity theory5 and show that
some well-known scheduling problems are likely not fixed-
parameter tractable for certain natural parameterizations.

A. Parameterized complexity classes

FPT, the class of all parameterized problems for which there
are fpt-algorithms, is the basic complexity class for problems
that are considered tractable in parameterized complexity theory,
similar to how P is often considered to be the class of tractable
problems in classical complexity. The class XP contains all

5The discussion here about parameterized complexity classes is by necessity
very brief and very incomplete. For much more in-depth coverage of these
topics (and several more complexity classes), see for example the book by
Downey and Fellows [4].

parameterized problems for which there are xp-algorithms
(see, e.g., Theorem 10 above), but XP-hard problems are not
considered as tractable for their parameterization. It is known,
through a diagonalization argument using the time hierarchy
theorem, that FPT is strictly contained in XP: FPT ⊊ XP.

There are also many complexity classes in between FPT
and XP, for example the infinite W-hierarchy, which contains
classes called W[1], W[2], etc. The classes in the W-hierarchy
are defined as containing all those parameterized problems that
are reducible via an fpt-reduction (see Definition 4 below) to
canonical problems based on boolean decision circuits. It is
known that

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP

and these containments are generally believed to be strict (in
fact, at least one must be strict since FPT ⊊ XP).

Instead of boolean decision circuits it may be more illu-
minating, in the context of real-time scheduling theory, to
consider the many other natural and well-known problems
that are now known to be complete at the lower levels of
the W-hierarchy.6 An archetypical W[1]-complete problem is
CLIQUE parameterized by the clique size k, i.e., the decision
problem of whether a given undirected graph G contains
the complete graph Kk on k vertices as a subgraph. (We
point out that CLIQUE was previously used by Leung and
Whitehead [16] to establish the hardness of several basic real-
time scheduling problems. We will revisit the reductions of
Leung and Whitehead later in this section.)

It is known that if FPT = W[1], then the Exponential Time
Hypothesis (ETH) [32], which asserts that 3-SAT and several
other NP-complete problems cannot have sub-exponential time
algorithms (see Definition 5), must be false. Already showing
that a parameterized problem is W[1]-hard, for example by
reducing from CLIQUE, therefore offers fairly strong evidence
that it is not in FPT.

A parameterized problem that is NP-hard for some constant
value of the parameter is called para-NP-hard. An example is
GRAPH VERTEX COLORING parameterized by the number k
of colors, as GRAPH VERTEX COLORING is NP-hard for any
constant k ≥ 3 of colors. It is known that FPT = para-NP
if and only if P = NP. The classes XP and para-NP both
contain the entire W-hierarchy, but neither contains the other
(assuming P ̸= NP). All para-NP-hard problems are therefore
outside XP and vice versa. Similar to para-NP-hard we can
define para-coNP-hard, etc.

B. Parameterized reductions

To classify parameterized problems into complexity classes
we need an appropriate type of reduction that can transform one
parameterized problem into another. The standard polynomial-
time many-one reduction used in the classical theory of NP-
completeness is not fully satisfactory here as it lacks any notion
of the parameterization, making it at once too weak and too
powerful for some of our purposes. A reduction that can be used

6See for example [31] for a compendium of such problems.

between parameterized problems is instead the fpt-reduction,
defined below.

Definition 4 (fpt-reduction). Let A and B be two problems
parameterized by κ and κ′, respectively. An fpt-reduction from
(A, κ) to (B, κ′) is a mapping f such that

1) x ∈ A if and only if f(x) ∈ B for all x.
2) f(x) is computable by an fpt-algorithm with respect to

parameter κ.
3) There exists a computable function g : N→ N such that

κ′(f(x)) ⩽ g(κ(x)).

We note that an fpt-reduction is many-one (point 1 above), i.e.,
it maps yes-instances x of the first problem to yes-instances
f(x) of the second problem, and likewise for no-instances.
However, in contrast to a polynomial-time many-one reduction
it does not need to be computable in polynomial time, it
is enough that it is computable by some fpt-algorithm with
respect to parameter κ (point 2 above). On the other hand, it
is also restricted in that it must produce a parameter κ′ for the
second problem that is bounded by some function only on the
parameter κ of the first problem (point 3 above).

It is not difficult to see that the fpt-reduction has the basic
property that if there is an fpt-reduction between parameterized
problems (A, κ) and (B, κ′), and (B, κ′) is in FPT, then (A, κ)
is in FPT as well. Of course, it then also holds that if (A, κ)
fpt-reduces to (B, κ′) and (A, κ) is not in FPT, then neither
is (B, κ′). We can therefore use fpt-reductions to transfer the
hardness of one problem to another. For example, if (A, κ)
is W[1]-hard and fpt-reduces to (B, κ′), then (B, κ′) is also
W[1]-hard.

C. Intractability results for some scheduling problems

In this section we show that some basic uniprocessor
schedulability problems are unlikely to be in FPT for certain pa-
rameterizations. This will follow quite directly by reinterpreting
some known classical reductions.

Leung and Whitehead [16] presented (polynomial-time many-
one) reductions from CLIQUE to the SIMULTANEOUS CONGRU-
ENCES PROBLEM (SCP), and from SCP to the unschedulability
problem for asynchronous periodic tasks with constrained
deadlines. They described the last reduction for fixed-priority
unschedulability, but it is easy to see from their proof that it
applies equally well to any work-conserving scheduler, and thus
the schedulability problem for any work-conserving scheduler
for asynchronous periodic tasks with constrained deadlines is
coNP-hard.

If we consider the CLIQUE problem as parameterized by
the clique size k, we are interested in seeing what happens
to k while going through the two reductions of Leung and
Whitehead. We will not go into the details of the reductions
(they are given in Theorems 3.6 and 3.8 in [16], respectively),
but we will simply note that given a graph G = (V,E) as
the CLIQUE instance, they construct a task set of |V | tasks
with different offsets and periods, but where every task τi
has the same execution time and deadline: Ci = 1 and Di =

k − 1, where k was the clique size.7 We note then that the
schedulability problem is coNP-hard even when the number
of distinct deadlines or execution times is a constant (in fact,
even when that constant is just 1) and when the maximum
execution time is a constant (again, even if it is simply 1). We
immediately get the following as a corollary.

Theorem 11. The schedulability problem of any work-
conserving scheduler for asynchronous periodic tasks with
constrained deadlines is para-coNP-hard under each of the
following parameterizations:

• the number of distinct deadlines,
• the number of distinct execution times, and
• the maximum execution time.

Contrast this result to the case where the parameter is the
variety of the task system (the number of distinct combinations
of offsets, deadlines, and periods), where we have seen that the
same EDF-schedulability problem is in FPT (Theorem 7). We
can also contrast Theorem 11 to the case where the parameter
is the number of distinct periods. There we have seen that, at
least with synchronous tasks, the FP-schedulability problem is
in FPT (Theorem 5) and the EDF-schedulability problem is
in XP (Theorem 10) and therefore neither can be para-coNP-
hard unless P = NP. These observations offer some indication
that limiting the number of distinct periods generally is more
important for the tractability of schedulability problems than
limiting the other parameters.

Looking again at the reductions of Leung and Whitehead
we note that every task created has Di = k − 1, where k was
the original clique size. This is not a constant, so we cannot
conclude that the schedulability problem is para-coNP-hard
parameterized by the maximum deadline. However, we can
trivially reinterpret Leung and Whitehead’s reduction as an
fpt-reduction where the parameter of the target problem is the
maximum deadline. Since CLIQUE is W[1]-hard parameterized
by the clique size, we then get the following.

Theorem 12. The schedulability problem of any work-
conserving scheduler for asynchronous periodic tasks with
constrained deadlines is W[1]-hard when parameterized by
the maximum deadline.

This can be contrasted to the case with synchronous tasks,
where FP-schedulability is in FPT when parameterized by the
maximum deadline (follows from Theorem 1).

Finally, we make another observation from a known clas-
sical reduction. Ekberg and Yi [33] showed that the EDF-
schedulability (or feasibility) problem for synchronous tasks
with constrained deadlines is coNP-hard through a reduction
that produces tasks that all have Ci = 1. Similar to Theorem 11,
we immediately get the following.

7Here we have also scaled the task parameters to integers, whereas Leung
and Whitehead produced rational task parameters.

Theorem 13. The EDF-schedulability problem for synchronous
tasks with constrained deadlines is para-coNP-hard under both
of the following parameterizations:

• the number of distinct execution times, and
• the maximum execution time.

D. Lower bounds on problems inside FPT

Here we will consider more fine-grained lower bounds on
the runtime for problems that are in FPT. We will see that
some parameterized scheduling problems cannot be solved in
time that is sub-exponential in the parameter, given a plausible
conjecture in complexity theory.

As we have seen, problems in FPT can be solved in time
O(f(k)×|x|c), where |x| is the size of the input, c is a constant,
k = κ(x) is the parameter, and f is any computable function.
While such problems are typically considered tractable in fixed-
parameter analysis, the running time of such an fpt-algorithm
of course strongly depends on the size of the constant c and
the growth of function f . Given a parameterized problem in
FPT we might wonder if the constant c can be reduced. Ideally,
if c = 1, then the problem is solved by some algorithm that is
only linear in the input size (but still potentially exponential
or worse in the parameter); such problems are said to be in
complexity class FPL (for Fixed-Parameter Linear), and it is
known that FPL ⊊ FPT. We can give upper bounds on c for
a problem by simply providing an appropriate fpt-algorithm
for it, but giving lower bounds on c would generally be very
difficult.

We might also wonder if the function f can be replaced
by a slower-growing one. Here we can use parameterized
complexity theory to prove lower bounds on the growth of
function f , given that the Exponential Time Hypothesis (ETH)
is true. The ETH is a hypothesis8 formulated by Impagliazzo
and Paturi [32] that states the following.

Definition 5 (ETH). There exists a δ > 0 such that no
algorithm can solve 3-SAT in time O(2δn), where n is the
number of variables.

(A somewhat simpler form that is implied by the ETH is that
3-SAT cannot be solved in time 2o(n).)

Note that the ETH says that 3-SAT cannot be solved in time
that is sub-exponential in the number of variables, but it says
nothing about the number of clauses. The sparsification lemma
by Impagliazzo et al. [34] shows how a 3-SAT instance can be
replaced by disjunction of 3-SAT formulas that are sparse, i.e.,
that have m = O(n), where n is the number of variables and
m is the number of clauses. A corollary of the sparsification
lemma is the following.

Theorem 14 (see, for example, Theorem 14.4 in [22]). If the
ETH is true, then 3-SAT cannot be solved in time 2o(n+m).

An immediate consequence of Theorem 14 is that if we
consider 3-SAT as a parameterized problem with parameter

8The majority of researchers today seem to think that ETH is likely true,
but one should not overstate the evidence for it. The ETH is a much stronger
assumption than P ̸= NP.

n+m, and show that it can be reduced via a polynomial-time
reduction to another parameterized problem A such that the
parameter for A is κ = O(n+m), then A cannot be solved
by an fpt-algorithm in time O(2o(κ(x)) × |x|c) if the ETH
holds (see, for example, Observation 14.10 in [22]). In other
words, it would mean that problem A cannot be solved in time
O(f(κ(x))× |x|c) for any sub-exponential f .

We can now, again, reinterpret some known classical
reductions in scheduling theory to achieve new results on their
parameterized complexity. First we consider the schedulability
problem for asynchronous periodic tasks.

Baruah et al. [29] presented a reduction from 3-SAT to SCP
as an alternative to the reduction from CLIQUE to SCP by
Leung and Whitehead [16]. The original motivation for the
alternative reduction was to show that SCP is strongly NP-hard,
but here we will instead exploit its consequences based on
Theorem 14. The reduction from 3-SAT to SCP by Baruah et
al. (Theorem 3.2 in [29]) composed with the reduction from
SCP to unschedulability for asynchronous periodic tasks by
Leung and Whitehead (Theorem 3.8 in [16]) creates task sets
with 2n+ 3m = O(n+m) tasks, where n is the number of
variables and m the number of clauses in the 3-SAT formula.
By the reasoning above we therefore get the following result.

Theorem 15. The schedulability problem of any work-
conserving scheduler for asynchronous periodic tasks with
constrained deadlines cannot be solved in time O(2o(k)×|x|c),
where k is the number of tasks, if the ETH holds.

We already know that the EDF-schedulability problem for
asynchronous periodic tasks (even with arbitrary deadlines) is
in FPT when parameterized by the number of distinct kinds of
tasks (Theorem 7). The result in Theorem 15 states, however,
that the dependence on the runtime of that parameter (or even
the total number of tasks) cannot be sub-exponential if the
ETH holds.

Second we consider the EDF-schedulability problem for syn-
chronous tasks. Here we can similarly compose the reduction
from 3-SAT to SCP by Baruah et al. [29] with the reduction
from SCP to EDF-unschedulability by Ekberg and Yi [33] to
create task sets with O(n + m) number of distinct periods.
From this we can again provide a lower bound on the runtime.

Theorem 16. The EDF-schedulability problem for synchronous
tasks with constrained deadlines cannot be solved in time
O(2o(k) × |x|c), where k is the number of distinct periods, if
the ETH holds.

We do not know yet if this schedulability problem is in
FPT when the parameter is the number of distinct periods
(Theorem 10 gives an xp-algorithm), but if it is, then The-
orem 16 shows that it still cannot be solved in time that is
sub-exponential in the parameter, given that the ETH holds.

VII. CONTEXT AND CONCLUSIONS

Fixed-parameter analysis of algorithms is generating consider-
able interest in the Algorithms community as a potential means
of dealing with the inherent computational complexity of many

important problems.9 Many of the basic and foundational prob-
lems in real-time scheduling are known to be computationally
intractable; it therefore seems appropriate that the real-time
scheduling theory community investigates the applicability of
ideas from fixed-parameter analysis to our scheduling problems.
This paper reports on our efforts at doing so. We have examined
several basic real-time scheduling problems that are known
to be intractable (NP-hard and coNP-hard) via the lens of
fixed-parameter analysis. We have shown that appropriate
parameterizations of these problems may allow one to identify
root causes of intractability; some parameterizations admit
to fpt-algorithms while others seem to not do so (recall our
observation following Theorem 11 that in order to achieve
tractability it appears that limiting the number of distinct
periods is more important than limiting the other parameters.)
We have obtained parameterized characterizations of widely-
used real-time schedulability-analysis algorithms (including
RTA [8], [9] and PDA [10]), and we use these characterizations
to help explain why these algorithms perform excellently upon
some kinds of systems but not upon others. We have classified
individual schedulability-analysis problems into parameterized
complexity classes (FPT, the W-hierarchy, and XP), and have
shown hardness results for some particular problems.

We close with the caveat that although useful, such lower
bounds do not tell the whole story—it is important to note
that one algorithm being FPT for a particular parameter does
not necessarily make it better than another algorithm that is
not (known to be) FPT, even when that parameter happens
to be small. It is well-known that the best polynomial-time
algorithms are not always faster than even exponential time
algorithms in practice.10 We note that Bini and Buttazzo [19]
reported favorable running times for HET on random task
sets compared to RTA, while Davis et al. [36] later reported
the opposite with different settings for the random task set
generation, which they argued resulted in more representative
task sets. Clearly, and unsurprisingly, different algorithms
perform differently depending on the particulars of what the
input looks like, sometimes for obvious reasons, but sometimes
due to much more subtle structural differences in the input. The
real-time systems community is well-versed in investigating
and analyzing such differences for average running times over
carefully crafted sets of representative inputs (which the above
is an example of). We believe that fixed-parameter analysis is
a useful complement to this, in that it can analytically explain
differences in worst-case running times for different inputs.
The choice of interesting parameters and the resulting analysis
is not always straightforward, and a much more structured
study than presented in this initial work would be needed to
truly understand the differences in worst-case parameterized
running times between, say, HET and RTA, with its variants.

9Indeed, a chapter on this topic [5] is the first technical one in a recent
book [35] titled “Beyond the Worst-Case Analysis of Algorithms”.

10A famous example is of course the simplex algorithm for solving linear
programs, which has exponential worst-case complexity but in practice
outperforms the best polynomial-time algorithms.

APPENDIX
A CAUTIONARY TALE ON THE CHOICE OF PARAMETER

We will round off by demonstrating concretely how care
has to be taken with the choice of parameterization, lest it turn
algorithms into fpt-algorithms for mundane reasons that offer
no new insights. In particular, we will see that parameterization
κ3, the largest numerical task parameter in the task set, can
act like this.

Let Γ be some asynchronous periodic task set of n tasks.
First we note that for any task τi ∈ Γ we have

Ci

Ti
≥ 1

Tmax
,

and therefore we have

U(Γ) ≥ n

Tmax
.

If U(Γ) ≤ 1 we must then have

κ3 ≥ Tmax ≥ n. (9)

To encode Γ into a bit-string we need to encode four numbers
(the task parameters) per task, each of which is no larger than
κ3. So the bit-size b of an encoding of Γ is O(n log(κ3)), but
by Eq. 9 we then have

b = O(κ3 log(κ3)). (10)

In other words, the size of the input can be bounded by some
function f(κ3) that depends only on κ3.

Say that we have some schedulability analysis algorithm A

on task sets Γ that is by no reasonable measure to be considered
efficient, perhaps its running time is double-exponential, 22

b

,
where b is the size of the input. By Eq. 10 we have

22
b

= 22
O(κ3 log(κ3))

,

and therefore there is a computable function f(·), such that
f(κ3) ≥ 22

b

. Now we can rewrite the running time of algorithm
A as f(κ3)× b0, and therefore A is in fact an fpt-algorithm
when parameterized by κ3.

Clearly, A was here established as an fpt-algorithm for
entirely mundane reasons: A is still the same very inefficient
algorithm. The underlying reason that it could be shown to be
an fpt-algorithm under κ3 is simply that κ3 is too large for a
good parameterization — it allowed us to bound the size of
the input by a function on the parameter.

We should note that when κ3 was used in Theorems 1 and 8,
we did not exploit it like this: the function f(·) used there is
the identity function. While the definition of an fpt-algorithm
allows any function f(·), the growth of it is important from a
practical perspective. The main purpose of introducing κ3 in
this paper was for Theorems 1 and 8 to state, in the terminology
of fixed-parameter analysis, the known results that some popular
schedulability algorithms run in pseudo-polynomial time. It
then led to Theorems 2 and 9, which use the much more useful
parameterization κ5 — the ratio between largest and smallest
period — that can stay small even for large inputs. Finally, κ3

allows us to make the point of this appendix!

REFERENCES

[1] Pontus Ekberg and Wang Yi. Complexity of Uniprocessor Scheduling
Analysis, pages 1–18. Springer Singapore, Singapore, 2019.

[2] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness I: basic results. SIAM J. Comput., 24(4):873–921,
1995.

[3] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Monographs in Computer Science. Springer, 1999.

[4] Rodney G. Downey and Michael R. Fellows. Fundamentals of
Parameterized Complexity. Texts in Computer Science. Springer, 2013.

[5] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Parameterized algorithms. In Tim Roughgarden, editor, Beyond the
Worst-Case Analysis of Algorithms, pages 27–51. Cambridge University
Press, 2021.

[6] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[7] William Gasarch and Keung Kin. Parameterized complexity: A joint
review of two new books and a preview of a third. The Computer
Journal, 51, 01 2008.

[8] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, October 1986.

[9] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In
Proceedings of the Real-Time Systems Symposium - 1989, pages 166–171,
Santa Monica, California, USA, December 1989. IEEE Computer Society
Press.

[10] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190, Orlando, Florida, 1990. IEEE
Computer Society Press.

[11] Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter
tractability. In Jon Lee and Jens Vygen, editors, Integer Programming
and Combinatorial Optimization - 17th International Conference, IPCO
2014, Bonn, Germany, June 23-25, 2014. Proceedings, volume 8494 of
Lecture Notes in Computer Science, pages 381–392. Springer, 2014.

[12] Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter
tractability. Math. Program., 154(1-2):533–562, 2015.

[13] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. In 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 407–414.
IEEE Computer Society, 2010.

[14] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[15] Joseph Y.-T Leung and M. Merrill. A note on the preemptive scheduling
of periodic, real-time tasks. Information Processing Letters, 11:115–118,
1980.

[16] Joseph Y.-T Leung and Jennifer Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evaluation,
2:237–250, 1982.

[17] Aloysius Mok. Fundamental Design Problems of Distributed Systems for
The Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[18] Y. Manabe and S. Aoyagi. A feasibility decision algorithm for rate
monotonic scheduling of periodic real-time tasks. In Proceedings Real-
Time Technology and Applications Symposium, pages 212–218, 1995.

[19] Enrico Bini and Giorgio Buttazzo. Schedulability analysis of periodic
fixed priority systems. IEEE Transactions on Computers, 53(11):1462–
1473, 2004.

[20] Jane W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper Saddle
River, New Jersey 07458, 2000.

[21] M. Garey and D. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman and company, NY, 1979.

[22] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

[23] Pontus Ekberg and Wang Yi. Fixed-priority schedulability of sporadic
tasks on uniprocessors is NP-hard. In 2017 IEEE Real-Time Systems
Symposium, RTSS 2017, Paris, France, December 5-8, 2017, pages
139–146. IEEE Computer Society, 2017.

[24] M. Sjodin and H. Hansson. Improved response-time analysis calcula-
tions. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279), pages 399–408, December 1998.

[25] H. Lenstra, Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, November 1983.

[26] Ravi Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of Operations Research, 12(3):415–440, 1987.

[27] A. Frank and E. Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–65,
1987.

[28] Friedrich Eisenbrand. Fast integer programming in fixed dimension. In
Giuseppe Di Battista and Uri Zwick, editors, Algorithms - ESA 2003,
11th Annual European Symposium, Budapest, Hungary, September 16-19,
2003, Proceedings, volume 2832 of Lecture Notes in Computer Science,
pages 196–207. Springer, 2003.

[29] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-Time Systems: The International Journal of Time-Critical
Computing, 2:301–324, 1990.

[30] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
non-preemptive real-time uniprocessor scheduling. Technical Report
RR-2966, INRIA: Institut National de Recherche en Informatique et en
Automatique, 1996.

[31] Marco Cesati. Compendium of parameterized problems. http://cesati.
sprg.uniroma2.it/research/compendium/compendium.pdf, 2006.

[32] R. Impagliazzo and R. Paturi. Complexity of k-SAT. In Proceedings of
the 14th Annual IEEE Conference on Computational Complexity, pages
237–240, 1999.

[33] P. Ekberg and W. Yi. Uniprocessor feasibility of sporadic tasks with
constrained deadlines is strongly coNP-complete. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 281–286, 2015.

[34] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity? Journal of Computer
and System Sciences, 63(4):512–530, 2001.

[35] Tim Roughgarden, editor. Beyond the Worst-Case Analysis of Algorithms.
Cambridge University Press, 2021.

[36] Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact
schedulability tests for fixed priority real-time systems. IEEE Transactions
on Computers, 57(9):1261–1276, 2008.

