
Global EDF-based scheduling of multiple independent synchronous dataflow graphs

Abhishek Singh
The University of North Carolina at Chapel Hill

abh@cs.unc.edu

Sanjoy Baruah
Washington University in St. Louis

baruah@wustl.edu

Abstract—The global scheduling of systems that can be mod-
eled as collections of multiple independent recurrent real-time
tasks, each represented as a synchronous dataflow graph (SDFG),
upon an identical multiprocessor platform is considered. An EDF-
based scheduling algorithm is proved optimal under the speedup
factor metric, and a speedup-optimal sufficient schedulability test
is derived.

Keywords—SDF Graphs; constrained-deadline recurrent tasks;
global multiprocessor scheduling; speedup-optimal scheduling;
pseudo-polynomial time schedulability analysis.

I. INTRODUCTION

The research discussed in this manuscript arose out of
interactions with colleagues in the telecommunication industry
who shared with us some scheduling problems arising in the
design of base-stations for wireless cellular communication
systems. A base-station should be able to handle a certain
number of connections. For each handled connection, streams
of data packets arrive at the base-station and go through a
number of stages of data-flow processing — these stages may
be different for different connections. A specified minimum
duration is assumed between the arrival of successive data
packets of the same connection, and the processing of the
packet is required to complete within a specified duration of
its arrival.

It is natural to model such processing requirements us-
ing sporadic task models of the kind that have been very
widely studied in the real-time scheduling literature, with
the minimum inter-arrival duration between successive data
packets modeled by the “period” parameter, and the duration
allowed for the processing of each packet by the “relative
deadline” parameter. In the telecom applications we were
dealing with the actual processing of the packets were repre-
sented using the Synchronous Data Flow Graph (SDFG) [13]
abstraction; there does not appear to be a straight-forward
means of directly modeling such processing requirements
using the concepts and terminology of real-time scheduling
theory. Although the SDFG abstraction has been studied for
decades, the run-time scheduling of computational workloads
that are represented in the SDFG model has traditionally
been done via static scheduling methods (e.g., [14], [12])
in which scheduling tables are determined prior to run-time
and these pre-computed tables are used for making run-time
scheduling decisions. As embedded streaming applications be-
come increasingly more computation-intensive and efficiency
of implementation becomes an increasing concern, however,
efforts are being made (e.g., [8], [2], [3], [1], [15], [10],
[11] – this is not an exhaustive list) to explore the use of
dynamic scheduling approaches, of the kind that are studied

in the real-time scheduling theory community, in order to
obtain more resource-efficient implementations of systems that
are represented using the SDFG model. To our knowledge,
none of these prior approaches claim optimality or provable
quantitative bounds on deviation from optimality; indeed, it is
fairly easy to construct example instances in which each prior
approach will result in implementations that make arbitrarily
inefficient use of platform computing resources.
Motivation. The long-term objective of our research is to in-
vestigate the applicability of the concepts, techniques, method-
ologies, and results of real-time scheduling theory to the analy-
sis of real-time workloads that are represented using the SDFG
model. We believe that there is plenty of opportunity here:
real-time scheduling theory has made tremendous progress in
recent years, but this progress has, by and large, remained
focused upon the workload models popular within the commu-
nity. Meanwhile data-flow models such as SDFG are finding
increasing use in many embedded application domains, but
research on these models is only now beginning to address
the issue of enhancing implementation efficiency via dynamic
scheduling. This offers us in the real-time scheduling theory
community an opportunity to demonstrate the usefulness and
applicability of our research endeavors, and provides us with a
rich source of interesting new problems that are of immediate
interest outside the real-time scheduling theory community.

This research. Sporadic tasks in which the processing re-
quirements are represented using the SDFG model have been
called sporadic real-time SDFG tasks. An algorithm based
upon the Earliest Deadline First scheduling strategy (EDF) was
presented in [19] for scheduling multiple independent sporadic
real-time SDFG tasks, and proved to be uniprocessor optimal
in the following sense: if a particular real-time system modeled
as a collection of multiple independent sporadic real-time
SDFGs could be scheduled upon a preemptive uniprocessor by
any algorithm to always meet all deadlines, then the algorithm
in [19] also guarantees to always meet all deadlines when
scheduling this system. An exact schedulability test for this
algorithm was also presented; a more efficient exact schedu-
lability test, with run-time polynomial in the representation
of the system being scheduled, was subsequently presented
in [20] (the test in [19] had exponential worst-case running
time).

In this paper, we consider the global scheduling of systems
of multiple independent sporadic real-time SDFGs upon pre-
emptive multiprocessor platforms. We generalize the results
of [19], [20] by

1) showing that (the global multiprocessor extension to)

307

2017 IEEE Real-Time Systems Symposium

1052-8725/17/31.00 ©2017 IEEE
DOI 10.1109/RTSS.2017.00036

the algorithm of [19] is speedup optimal for EDF-based
scheduling, by showing that it has a speedup bound of
(2− 1

m) upon an m-processor platform, while no EDF-
based algorithm may have a smaller speedup bound; and

2) deriving a speedup-optimal sufficient schedulability test
for this algorithm.

We thus show that the results for recurrent task systems rep-
resented using the sporadic real-time SDFG model mirror the
results for recurrent task systems represented using traditional
real-time scheduling models such as 3-parameter sporadic
tasks [16] and sporadic DAG tasks [6] — for both these
models, EDF-scheduling has previously been proved optimal
upon preemptive uniprocessors and shown to have a speedup
bound of (2 − 1

m) upon preemptive multiprocessors, and
speedup-optimal sufficient schedulability-analysis tests upon
both uni- and multi-processors are known.

Organization. The remainder of this paper is organized in
the following manner. The sporadic real-time SDFG model
is described in Section II. A closely related model, the
sporadic DAG model, is discussed in Section III; here we also
explore similarities and differences between the two models.
Section IV extends some concepts concerning sporadic DAG
tasks to derive a speedup bound for the global scheduling of
multiple independent sporadic real-time SDFGs on a shared
platform; Section V derives an optimal schedulability test.

II. THE SPORADIC REAL-TIME SDFG MODEL

A dataflow graph is a directed graph1 in which the vertices
(called actors) represent computation and edges (called chan-
nels) represent FIFO queues that direct data (called tokens)
from the output of one computation to the input of another.
Actors consume tokens from their input channels, perform
computations upon them (this is referred to as a firing of the
actor) and produce tokens on their output channels. Channels
may contain initial tokens (also known, for historical reasons,
as delays) — these represent data that populate the FIFO
queues prior to run-time.

A synchronous dataflow graph (SDFG) is a dataflow graph
with the additional constraint that the number of initial tokens
on each channel, as well as the number of tokens produced
(consumed, respectively) by each actor on each of its outgoing
(incoming, resp.) channels upon a firing of the actor, is a
known constant. More formally, an SDFG G is represented
by a 5-tuple of parameters: G = 〈V,E, PROD, CONS, DELAY〉,
where
• V denotes the actors.
• E ⊆ V × V denotes the channels.

For channel e = (u, v), we refer to u as TAIL(e) and v as
HEAD(e). We assume that TAIL(e) 6= HEAD(e) for any
e; i.e., no channel leads from an actor back to itself.

1Dataflow models often also allow for multiple edges between a pair of
vertices, and self-loops, which are edges leading from a vertex back to itself.
These semantically relevant features do not impact schedulability, and are we
therefore ignore them in this paper — our results are easily extended to deal
with multiple edges and self-loops.

vin vout
PROD = 2

DELAY = 0
CONS = 3

Fig. 1: An example SDFG. Each vertex is labeled with the name
of the actor it represents; edge (vin, vout) denotes a channel
leading from vin to vout. The channel is labeled with its produce
and consume rates, and its delay.

• PROD : E → N>0. For each e ∈ E, PROD(e) tokens are
added to channel e each time the actor TAIL(e) fires.

• CONS : E → N>0. For each e ∈ E, CONS(e) tokens are
removed from channel e each time the actor HEAD(e)
fires.

• DELAY : E → N≥0. For each e ∈ E, there are DELAY(e)
initial tokens on channel e.

The number of tokens in each channel in E determines
the state or configuration of the SDFG G = 〈V,E, PROD,
CONS, DELAY〉. For a particular configuration of G, an actor
v ∈ V is said to be enabled if each channel e ∈ E for
which HEAD(e) = v contains at least CONS(e) tokens. An
enabled actor v may fire; doing so changes the configuration
of the SDFG in the following manner: CONS(e) tokens are
removed from each channel e ∈ E for which HEAD(e) = v,
and PROD(e) tokens are added to each channel e ∈ E for
which TAIL(e) = v. Algorithms have been developed [14],
[13] for determining, for a given SDFG, whether sequences
of firings could lead to deadlock — a configuration in which
no actor is enabled, or to buffer overflow — the number of
tokens in a channel growing without bound.2 In the remainder
of this paper we will assume that the SDFGs we deal with have
been a priori verified to be deadlock-free and not subject to
buffer overflow.

Definition 1 (Repetitions vector; Iteration). The repetitions
vector for an SDFG G is the unique smallest positive integer
vector q : V → N (not equal to 0) such that if each actor
v fires q(v) times, then the total number of tokens in each
channel is unchanged. An iteration is a set of actor firings
with as many firings as the repetitions vector entry for each
actor.

A homogeneous SDFG is an SDFG in which all the PROD
and CONS rates are equal to one. Algorithms are known [14]
for converting any SDFG into an equivalent homogeneous one
(which may, however, be of size exponential to the original
SDFG – such an exponential blow-up in size is known to be
unavoidable in the worst case).

A. Incorporating real-time considerations

As initially defined [14], [13], SDFGs do not deal with real
time: “SDF is an untimed model of computation. All actors
under SDF consume input tokens, perform their computation

2In addition to requiring that each buffer be of finite size, many SDFG
scheduling algorithms seek to minimize the maximum number of tokens
each buffer will need to hold. For simplicity we do not consider buffer-size
minimization here, simply requiring that they be of finite size and leaving as
future work the problem of determining the minimum sizes needed.

308

and produce outputs in one atomic operation.” [17, page 53].
Real-time modeling capabilities were added by incorporating
the notions of (i) latency between the executions of different
actors [9]; and (ii) the response time to external triggering
events that may occur recurrently in a sporadic manner [19].
To account for execution times, an additional parameter(

WCET : V → N≥0
)

was added to the specification of an
SDFG, with the interpretation that for each v ∈ V , WCET(v)
is the worst-case execution time of a (single) firing of actor
v. In order to explicitly represent real-time responsiveness
to recurrent external triggering events, the SDFG model was
extended as follows: for each SDFG, we are required to
additionally specify

1) A single input actor vin and a single output actor vout.
External tokens are assumed to arrive at vin.

2) A period parameter, denoting the minimum duration
between successive arrivals of external tokens at vin.

3) A relative deadline parameter, denoting the maximum
duration that may elapse between the arrival of an
external token at vin and the completion of the “corre-
sponding” execution of the output actor vout (this notion
of correspondence is formalized in Definition 2 below).

Suppose that the simple SDFG shown in Figure 1 represents
a real-time sporadic SDFG (i.e., in this extended model).
Suppose that the first external input token arrives at actor
vin at some time-instant, thereby causing vin to fire. Observe
that since the produce rate of the channel leading from vin
to vout is two while the consume rate is three, at least two
firings of vin must occur before actor vout may fire for the
first time. But since the period of the SDFG denotes only a
lower bound on the duration between the arrival of successive
external input tokens, we cannot provide an upper bound upon
the time-instant at which actor vout is enabled – this depends
upon when the second external input token arrives at actor
vin. It is therefore not meaningful to discuss the latency of the
response to the first external input token, since the response
will be triggered by not the first, but the second external input
token. Ghamarian et al. [9] sidestepped the dilemma that this
poses, by arguing that an entire iteration (see Definition 1)
of an SDFG should be thought of as representing a single
logical chunk of computation. Therefore it is not meaningful to
consider the arrivals of external input tokens at the input actor,
and firings of the output actor, within an iteration; instead,
we should only consider the delay between the arrival of an
external input token that initiates the first firing of the input
actor within an iteration, and the completion of the execution
of the last firing of the output actor during that iteration.
They therefore proposed [9, page 191] that any SDFG be
preprocessed by “add[ing] an explicit source actor to the [input
actor] and a destination actor to the [output actor], each of
which fires by construction exactly once in every iteration of
the graph. If an SDFG already has meaningful input and output
actors with repetition vector entries of one, these actors can
function as source and destination and no actors need to be
added.” The precise details of such construction are elaborated

upon in [9]. Henceforth, we will assume that our SDFGs have
been pre-processed in this manner, and that as a consequence,
we have SDFGs with designated input and output actors that
are guaranteed to execute exactly once per iteration.

An additional factor that must be taken into account arises
from the tokens that populate each channel initially, as spec-
ified by the DELAY parameters. There are DELAY(e) such
tokens on each e ∈ E; since each DELAY(e) is finite and
since we require that each actor be reachable from vin, any
actor can fire at most a finite number of times prior to vin
firing for the first time. The dependency distance denotes the
maximum number of times the output actor vout can fire before
exhausting the initially-supplied tokens:

Definition 2 (Dependency Distance δ [21]; Correspondence).
Due to the initial distribution of tokens on the channels
specified by DELAY, vout can fire some δ times before the first
firing of vin. The number δ is called the dependency distance.

For any k ∈ N, the k-th firing of vin is said to correspond
to the (k + δ)-th firing of vout, where δ is the dependency
distance.

Summarizing the model. We will refer to the recurrent task
model obtained by making all the enhancements discussed
above to the “traditional” SDFG model as the sporadic real-
time SDFG model. A task in this model is specified by the
following parameters:

G
def
=
〈
V,E, PROD, CONS, DELAY,WCET, vin, vout, D, T

〉
(1)

with
• V , E, PROD, CONS, and DELAY as specified for tradi-

tional SDFGs;
• WCET : V → N≥0 specifying the worst-case execution

times of the actors;
• Actors vin ∈ V and vout ∈ V being specified as the

unique input and output actor, respectively; and
• D ∈ N and T ∈ N specifying the relative deadline and

period parameters of this sporadic real-time SDFG task.
Additionally, we assume that the SDFG has been validated to
be deadlock-free and free from buffer overflow, and to have
the repetition rates for the input and output actors equal to
one: q(vin) = q(vout) = 1.

In this paper, we restrict our attention to sporadic real-time
SDFGs possessing the additional property that their relative
deadline parameter is no greater than their period: D ≤ T
(recurrent tasks possessing this property are often referred
to as constrained deadline tasks in the real-time scheduling
literature).

We define the utilization U(G) of such a sporadic real-time
SDFG as follows:

U(G) =
(∑
v∈V

(WCET(v)× q(v))
)
/T (2)

An example sporadic real-time HSDFG comprising four
actors and five channels between these actors is depicted in

309

vin

a

b

vout0

0

0

1

3

D = 6

T = 10

actor vin vout a b
WCET 1 1 1 2

Fig. 2: An example sporadic real-time HSDFG; the channels are
labeled with the number of initial tokens.

Figure 2. Since this is a homogeneous SDFG, all the produce
and consume rates are equal to one. The worst-case execution
requirement parameters, relative deadline, and period are as
specified in the diagram (observe that D is indeed ≤ T).

Some prior results from [19], [20]. An EDF-based algo-
rithm was derived in [19] for scheduling multiple indepen-
dent sporadic real-time SDFGs optimally upon a preemptive
uniprocessor. As is fairly standard in preemptive uniprocessor
EDF schedulability analysis, this algorithm quantifies the
computational demand of each individual task via the demand
bound function [4]. For any sporadic real-time SDFG G and
any positive real number t, let DBF(G, t) denote the maximum
cumulative execution requirement of all actors that can be
generated by G to have both their arrival times and their
deadlines within a contiguous interval of length t. With respect
to this particular sporadic real-time SDFG G, let k(t) denote
the following function:

k(t)
def
= max

(
0,

(⌊ t−D
T

⌋
+ 1

))
(3)

It is evident that over any contiguous time-interval of duration
t there may be at most k(t) external input tokens arriving at vin
for which the corresponding firings of vout must occur within
the interval. Since each arrival of an external input token at vin
triggers one iteration of G, an upper bound for DBF(G, t) may
be obtained by simply assuming that each actor a fires a total
of q(a) times during each such iteration, thereby obtaining a
bound of

k(t)×
∑
v∈V

(
q(v)WCET(v)

)
(4)

This bound, while safe, may not be tight – the presence of
initial tokens on some of the channels (as represented by the
DELAY(c) values) means that not all firings of all actors need
take place, as illustrated in the following example.

Example 1. Consider the example HSDFG of Figure 2 and
consider a value of t satisfying D < t < T +D, so that k(t)
evaluates to 1 by Equation 3. Hence Expression 4 is computed
to have a value of(

WCET(vin) + WCET(vout) + WCET(a) + WCET(b)
)
= 5

However, the reader may verify that the presence of initial
tokens ensures that vout is able to fire even if actors a and b
do not fire. Hence over such a t, DBF(G, t) equals(

WCET(vin) + WCET(vout)
)
= 2,

which is smaller than the value computed by Expression 4.

The EDF-based scheduling algorithm of [19] exploits the
observation illustrated in the example above to reduce the
DBF. It first computes, prior to run-time, a skip vector s(·) of
non-negative integers with |V | components, which represents
the maximum number of firings of each actor that may be
“skipped” (i.e., postponed) as a consequence of the presence
of initial tokens on the channels. These skip vector values are
used during run-time to assign deadlines to the execution of
individual actors; the precise manner in which this is done
is detailed in [19]. For instance in the example above, the
computed skip vector values for the HSDF of Figure 2 turn
out to be

s(vin) = s(vout) = 0, s(a) = 1, and s(b) = 3 . (5)

During run-time if an external token arrives at vin at time-
instant to, an instance of each actor is released at to with
deadline at time-instants to+D for vin and vout, (to+D+T)
for a, and (to+D+3T) for b. The correctness of this strategy
is formally proved in [19], and algorithms for computing the
skip vector values in polynomial time are presented in [19]
for HSDFGs, and in [20] for general (i.e., not necessarily
homogeneous) SDFGs.

III. THE SPORADIC DAG TASK MODEL

In the sporadic DAG tasks model [6], each task is specified
by a tuple (Gi, Di, Ti), where Gi = (Vi, Ei) is a vertex-
weighted directed acyclic graph, and Di and Ti are positive
integers. Each vertex v ∈ Vi of the DAG corresponds to a
sequential job, and is characterized by a worst-case execu-
tion time (WCET) ev . Each edge represents a precedence
constraint: if (v, w) is an edge in the DAG then the job
corresponding to vertex v must complete execution before the
job corresponding to vertex w may begin execution. Groups
of jobs that are not constrained (directly or indirectly) by
precedence constraints may execute in parallel if there are
processors available for them to do so. We say the task Gi
releases a dag-job at time-instant t when it becomes available
for execution. When this happens, we assume that all |Vi|
of the jobs are released and become available for execution,
subject to the precedence constraints. During any given run the
task may release an unbounded sequence of dag-jobs; all |Vi|
jobs that are released at some time-instant t must complete
execution by time-instant t + Di. A minimum interval of

310

duration Ti must elapse between successive releases of dag-
jobs.

The scheduling of systems of multiple independent sporadic
DAG tasks has been studied extensively in the real-time
scheduling literature (see, e.g., [5, Chapter 21] for a textbook
survey of some results). It is known, for example, that global
EDF has a speedup bound of (2 − 1/m) in scheduling such
systems upon m-processor platforms, and pseudo-polynomial
EDF schedulability analysis algorithms have been derived for
bounded-utilization systems – please see [5, Chapter 21] for
details.

A. Reducing sporadic real-time SDFGs to DAG tasks

It is evident that sporadic real-time SDFGs are very similar to
sporadic DAG tasks. Given any SDFG, we can first convert
it to a homogeneous SDFG (HSDFG) – as previously stated,
algorithms are known [14] for doing so. Once this is done,
we can think of the firing of each actor of the HSDFG as
corresponding to the execution of a particular job of the
sporadic DAG task, and the channels of the HSDFG as
representing precedence constraints between such jobs. Hence
the arrival of an external token at the input actor of the HSDFG
corresponds to the release of a dag-job of the sporadic DAG
task; one iteration of the HSDFG corresponds to the execution
of an entire dag-job.

In the absence of initial tokens (DELAYs), this correspon-
dence between sporadic real-time SDFGs and sporadic real-
time DAG tasks is exact, and schedulability results for spo-
radic DAG task systems are directly applicable to systems of
sporadic real-time SDFGs. However, recall that the presence
of initial tokens allows for some actor executions to be
skipped during an iteration (or rather, to be postponed to future
iterations). Such postponement of the execution of individual
jobs is not supported in the sporadic DAG tasks model, and
hence the results for sporadic DAG tasks cannot be directly
applied to the execution of sporadic real-time SDFGs. We
illustrate via an example.

Example 2. Recall (Expression 5) that the skip vector val-
ues for the example sporadic real-time HSDFG depicted in
Figure 2 are as follows: s(vin) = s(vout) = 0; s(a) =
1; and s(b) = 3. In Figure 3, the dependencies amongst actor
executions are shown for the first six iterations of this sporadic
real-time HSDFG, assuming that external tokens arrive at vin
exactly T = 10 time units apart. (For those reading this
manuscript on a color medium, alternate iterations are depicted
in different colors – red and blue.) Notice that this figure is
not equivalent to simply replicating six copies of the HSDFG
of Figure 2, each representing one iteration, with successive
copies separated by a duration T = 10 along the time axis.
Instead, the channels from the actors a and b to the actor
vin within each iteration have been replaced by precedence
constraints leading from a to the vin of the next iteration, and
from b to the vin three iterations later.

As illustrated in the example above, the presence of initial
tokens in an SDFG means that schedulability analysis algo-

rithms that were developed for sporadic DAG task systems are
not directly applicable to the sporadic real-time SDFG model.
However, some novel concepts that were developed to enable
analysis of sporadic DAG task systems may be adapted to
the analysis of systems of sporadic real-time SDFGs as well.
In Section III-B below we discuss one particularly important
such concept.

B. Well-formed collections of jobs

The concept of a normal collection of jobs was introduced
in [7]; here, we propose a generalization:

Definition 3. A collection of jobs J is a set of jobs that are
revealed over time, with a job j ∈ J becoming known upon
its release time. Each job j ∈ J is characterized by a release
time rj ∈ N0, an absolute deadline dj ∈ N, an execution time
ej ∈ N, and a set of predecessor jobs Jj which are exactly the
jobs which have to be finished before j can begin to execute.

A collection of jobs J is said to be a well-formed collection
of jobs if it satisfies the additional property that for every
predecessor job j of each job k, dj ≤ dk.

(This generalizes the concept of normal collection [7], for
which it is required that additionally, ri = rj .)

The following generalization of a technical lemma from [7]
provides a very useful characterization of global EDF sched-
ules for well-formed collections of jobs:

Lemma 1. Consider a well-formed collection of jobs J . Let
m ∈ N denote any positive integer, and α ∈ R≥1 any constant
that is ≥ 1. If there exists some schedule meeting all deadlines
for J upon unit-speed processors which, for any time interval
I , completes no more than (αm−m+1)·|I| units of execution
within I , then J is global-EDF schedulable on m speed-α
processors.

Proof: In the appendix.

We can use Lemma 1 to derive a speedup bound for the
global EDF scheduling of well-formed collections of jobs,
as follows. Consider any instance J that is feasible upon m
unit-speed processors; such feasibility immediately implies the
existence of a valid schedule which completes at most m · |I|
units of work in any interval I . Let us consider α← (2−1/m);
for this value of α, we have

(αm−m+ 1) · |I| = (2m− 1−m+ 1) · |I| = m|I|.

The speedup result in Lemma 2 immediately follows:

Lemma 2. Any well-formed collection of jobs that is feasible
on m unit-speed processors is EDF-schedulable on m proces-
sors each of speed (2− 1/m).

The bound of Lemma 2 is tight: examples are known [18],
even without precedence constraints (and hence trivially well-
formed), of feasible collections of jobs that are not EDF-
schedulable unless the speedup is at least (2− 1/m),

311

vin vout vin vout

a

vin vout

a

vin vout

a

b

vin vout

a

b

vin vout

a

b

6 16 26 36 46 560 10 20 30 40 50

Fig. 3: Illustrating the dependencies between actor executions, for six iterations of the HSDFG depicted in Figure 2.

IV. A SPEEDUP BOUND FOR REAL-TIME SPORADIC SDFGS

As we had stated in Section II, the EDF-based scheduling
algorithm of [19] for sporadic real-time SDFG tasks computes,
for a given task G, the skip vector values for all the actors
in G, and uses these skip vector values during run-time to
assign deadlines to the executions of individual actors. We
now describe this process in greater detail.

Given any sporadic real-time SDFG with period T and rela-
tive deadline D, consider the sporadic real-time homogeneous
SDFG (HSDFG) that is equivalent to it. Let us refer to the
execution of an actor as a job. The arrival of an external token
at the input actor of the SDFG at some time-instant to results
in the release of one job corresponding to each actor in the
equivalent HSDFG, each with a release time to. The relative
deadline assigned to each job, and the precedence constraints
between the jobs, are determined based upon the skip vector
values that are computed for the actors3 and the initial tokens
(DELAYs) on the edges. Specifically

• For each actor v, the corresponding job is assigned a
deadline equal to

(
to + s(v)× T +D

)
; and

• For each channel (u, v) leading from some actor u to
some actor v, a precedence constraint is added from the
job corresponding to u to the job corresponding to the
DELAY(u, v)’th-next invocation of actor v.

We illustrate this in the example below.

Example 3. Consider once again the dependencies amongst
the actor executions for the first six iterations of the example
sporadic real-time HSDFG of Figure 2 that are depicted in
Figure 3.
Since s(vin) = s(vout) = 0,

• each job corresponding to an execution of vin and vout
is assigned a deadline D = 6 time units after its release.

3The algorithm of [19] does not explicitly convert the SDFG to an
equivalent HSDFG (such a conversion could take exponential time). Hence,
the skip vector values of actors in the HSDFG are not explicitly computed;
instead, the skip vector values of actors in the original SDFG are computed,
and those for actors in the equivalent HSDFG deduced from these computed
values.

• the channels (vin, vout), (vout, a), and (vout, b) all result
in precedence constraints between jobs of the same
iteration.

Since s(a) = 1,
• each job corresponding to an execution of a is assigned

a deadline (T +D) = 16 time units after its release.
• the channel (a, vin) results in a precedence from a to the
vin generated in the next iteration.

Since s(b) = 3,
• each job corresponding to an execution of b is assigned

a deadline (3T +D) = 36 time units after its release.
• the channel (b, vin) results in a precedence from b to the
vin that is generated three iterations later.

Above we saw how we can represent an execution of
the SDFG G by a collection of precedence-constrained jobs.
Unlike DAGs, a sequence of precedence-constrained jobs
for an SDFG may have unbounded length. For instance,
in Figure 3, (vin, vout, a, vin, vout, a, vin, vout, . . .) is such a
sequence. For G to be feasible upon a platform comprising
speed-s processors, it is clearly necessary (albeit not sufficient)
that the WCETs of each sequence of precedence-constrained
jobs not exceed the deadline of the job at the end of the
sequence relative to the release of the first job of the sequence;
this is formally stated in the following lemma.

Lemma 3. In order that sporadic real-time SDFG G be
feasible upon a platform comprising speed-s processors, it
is necessary that the sum of the WCETs of each sequence of
precedence-constrained jobs not exceed the deadline of the job
at the end of the sequence relative to the release of the first
job of the sequence, times s.

It can be shown that for a given sporadic real-time SDFG
G, determining whether G satisfies the condition of Lemma 3
may be accomplished by first transforming G to an equivalent
HSDFG, and then checking this condition in time pseudo-
polynomial in the representation of this HSDFG.

We now relate systems of sporadic real-time SDFGs to well-
formed collections of jobs (Definition 3):

312

Lemma 4. For any system of independent sporadic real-time
SDFGs, the jobs corresponding to the execution of their actors
that are generated by the EDF-based scheduling algorithm
of [19], in response to any legal sequence of arrivals of
external tokens at their input actors, constitute a well-formed
collection of jobs.

Proof: Since the different sporadic real-time SDFGs are
assumed to be independent, there are no precedence constraints
between jobs of different SDFGs. It remains to show that jobs
generated by an individual sporadic real-time SDFG satisfy
the characterizing property of well-formed collections of jobs.

Given any sporadic real-time SDFG and any legal arrival
sequence of external tokens at its input actor, transform the
SDFG into an equivalent HSDFG and consider the jobs
corresponding to the execution of its actors as defined above
(and illustrated in Example 3). It is evident that these jobs
constitute a well-formed collection of jobs (Definition 3), since
if there is a precedence constraint from a job j in a particular
iteration to the job j′ that is ` iterations later (` ≥ 0), the
• the deadline of job j is (`× T +D) time units after its

release, while
• the deadline of job j′ is ≥ (`× T +D) time units after

the release of the j’th job.

By combining Lemma 4 with Lemma 2, we immediately have
the following speedup result for sporadic real-time SDFGs:

Theorem 1. Any system of independent sporadic real-time SD-
FGs that is feasible on m unit-speed processors is schedulable
on m processors each of speed (2− 1/m) by the EDF-based
algorithm in [19].

V. A SPEEDUP-OPTIMAL SCHEDULABILITY TEST

In order to derive a schedulability test for systems of
sporadic DAG tasks, Bonifaci et al. [7] introduced the notion
of a work function as a generalization to the concept of demand
bound function. This important notion is easily adapted to
sporadic real-time SDFGs; we do so in Section V-A below.
Then in Section V-B we show how this work function may be
used to form the basis for an effective schedulability test for
systems of sporadic real-time SDFGs.

A. A work function for sporadic real-time SDFGs

Let s denote any positive real number. For any collection of
jobs J , let S∞(J, s) denote the schedule obtained by allocating
a speed-s processor to each job in J the instant it is ready to
execute, and executing this job upon the allocated processor
until it completes execution. (Figure 4 depicts the schedule
S∞(J, 0.5), for J representing the jobs that correspond to the
firings of actors of the sporadic real-time HSDFG shown in
Figure 2, when input tokens arrive at vertex vin at time-instants
0 and 10.) The work function for sporadic real-time SDFGs
is defined as follows:
• For any interval I , let work(J, I, s) denote the amount of

execution occurring within the interval I in the schedule
S∞(J, s), of jobs with deadlines that fall within I .

-

? ?

vin vout b b

a

vin vout b b

a

0 2 4 6 8 10 12 14 16 18

Fig. 4: The schedule S∞(J, 1
2
), where J is the collection of jobs

corresponding to actor firings when input tokens arrive at time-
instants 0 and 10 for the task shown in Figure 2.

Observe that since S∞(J, s) executes each job as soon
as it becomes eligible to execute, thereby leaving as little
work to be done later as possible, every schedule for J on
speed-s processors meeting all deadlines has to complete
at least work(J, I, s) units of execution over interval I .

• For any positive integer t, let work(J, t, s) denote the
maximum value work(J, I, s) can take, over any interval
I of duration equal to t.

• Finally, for any sporadic real-time SDFG G, let
work(G, t, s) denote the maximum value of
work(J, t, s), over all job sequences J corresponding
to actor firings that could be required for the correct
execution of G.

Above we have defined work(G, t, s) to be the maximum value
of work(J, t, s), over all job sequences J that correspond to
actor firings that could be required for the correct execution
of G. It is evident that this maximum is achieved when the
deadline of some iteration of G coincides with the rightmost
endpoint of an interval of duration t, and the other iterations
of G occur as closely as legal — i.e., separated by a duration
exactly equal to the period T of the SDFG.

Example 4. In Figure 5, we illustrate how the work function
is computed by plotting work(G, t, 0.5) for 0 ≤ t ≤ 16,
for the example sporadic SDFG of Figure 2. The schedule
S∞(J, 0.5) for this task with J representing the jobs generated
when external tokens arrive at time-instants 0 and T = 10 is
depicted in Figure 4. Let us consider the deadline marked by
an inverted arrow at time-instant 16 (in red, for those reading
upon a color medium); observe that the two iterations of the
SDFG depicted in this figure occur exactly a period apart.
Below we examine the intervals [16− t, 16] in S∞(J, 0.5) for
different values of t.
• t ≤ 2. Although (jobs corresponding to) actors a and
b execute over the interval [14, 16] in S∞(J, 0.5), both
these jobs have deadlines beyond time-instant 16.

• 2 ≤ t ≤ 6. Both jobs executing over the interval [10, 14]
in S∞(J, 0.5) have deadlines prior to 16, and hence “con-
tribute” to the work function. work(G, t, 0.5) therefore
increases with a slope s = 0.5.

• 6 ≤ t ≤ 8. Since no execution occurs in S∞(J, 0.5) over
the interval [8, 10], the work function remains unchanged.

• 8 ≤ t ≤ 10. Although actor b executed in S∞(J, 0.5)
over the interval [6, 8], this actor’s deadline is at time-
instant 36, which is beyond 16. Therefore, the work
function remains unchanged.

313

-

6

t

work(G, t, 12)

��
��
��

��
��
��
��

0 2 4 6 8 10 12 14 16

0

2

4

5

Fig. 5: The work function derived in Example 4.

• 10 ≤ t ≤ 12. Both a and b execute in S∞(J, 0.5) during
[4, 6]. While actor a’s deadline is at 16, actor b’s deadline
is > 16; hence only actor a’s execution contributes to the
work function.

• 12 ≤ t ≤ 16. Both actors that execute in S∞(J, 0.5)
during [0, 4] have their deadlines ≤ 16, and therefore
contribute to the work function.

Putting the pieces together and simplifying, we have the
following expression for work(G, t, 0.5) for 0 ≤ t ≤ 16 (also
depicted visually in Figure 5):

work(G, t, 0.5) =


0 t ≤ 2
0.5× (t− 2) 2 ≤ t ≤ 6
2 6 ≤ t ≤ 10
2 + 0.5× (t− 2) 10 ≤ t ≤ 16

(6)

Continuing our analysis of this example, we saw that
since s(a) and s(b) are both > 0 neither contributes to
work(G, t, 0.5) for values of t < D (which equals 6). We also
saw that, since s(a) = 1, the execution of actor a contributes
to work(G, t, 0.5) for values of t ≥ 6 — in Figure 5, it is
actor a’s execution that results in work(G, t, 0.5) increasing
at a rate 1

2 for t ∈ [10, 12]. In a similar vein, it turns out
that since s(b) = 3, the execution of actor b only contributes
to work(G, t, 0.5) for values of t ≥ 2T + D which equals
2×10+6 or 26; this is depicted in the extended version of the
plot of Figure 5 above, which may be found as Figure 6.

Generalizing from the example above, it can be shown that
each actor v of a sporadic real-time HSDFG G contributes to
work(G, t, s) for values of t ≥

(
(s(v)− 1)× T +D

)
, where

s(v) denotes the computed skip vector value for actor v and
D and T denote the relative deadline and period of G. Let
λ1, λ2, . . . , λk denote the distinct non-zero values of s(v) for
actors v of G, sorted in increasing order (i.e., λi < λi+1 for
all i). It is fairly straightforward to establish that

• As a function of t, the work function work(G, t, s)
increases in a periodic manner (equivalently, its time-
derivative is periodic) with a period T , for values of t in
(i) [D, (λ1−1)T+D]; (ii) [(λ`−1)T+D, (λ`+1−1)T+
D], for each `, 1 ≤ ` < k; and (iii) [(λk − 1)T +D,∞].

• work(G, t, s) is a piecewise linear function, and the
number of linear “pieces” within any interval of duration
T is bounded from above by the number of actors in G.

It immediately follows that for any sporadic real-time HSDFG
G, an expression like Expression 6 for work(G, t, s) can be
determined in time polynomial in the representation of G.

Example 5. For the example HSDFG G of Figure 2, we have
λ1 = 1, (s(a)) and λ2 = 3 (s(b)). Figure 6 depicts the work
function for this HSDFG over [0, 50]; it may be verified that
• The work function trivially increases periodically with

period T = 10 over the interval

[D, (λ1 − 1)T +D] = [6, 0× 10 + 6] = [6, 6],

since the duration of the interval is ≤ 10;
• The work function increases periodically with period 10

over the interval

[(λ1−1)T+D, (λ2−1)T+D] = [6, (3−1)×10+6] = [6, 26],

remaining “flat” for four time units and increasing with
slope 0.5 for the remaining six; and

• The work function increases periodically with period 10
over the interval

[(λ2 − 1)T +D,∞] = [(3− 1)× 10 + 6,∞] = [26,∞],

where it is flat for 2 time units, increases with slope 0.5
for two time units, slope 1 for two more time units, and
again with slope 0.5 for a further four time units.

B. A schedulability test

Let τ denote a system of multiple independent sporadic real-
time HSDFGs, and let us extend the definition of the work
function from individual sporadic real-time SDFGs to τ in the
obvious manner: work(τ, t, s) =

∑
G∈τ work(G, t, s) .

We have established, in Lemma 4, that the jobs generated by
a system of multiple independent sporadic real-time HSDFGs
τ in response to legal sequences of arrivals of external tokens
constitute a well-formed collection of jobs. By applying Lem-
mas 1 and 3, we can therefore conclude that the following
together constitute sufficient conditions for the jobs generated
by such a system τ in response to any legal sequence of
arrivals of external tokens to be correctly scheduled by the
EDF-based algorithm of [19] upon m speed-α processors:

1) The sum of the WCETs of each sequence of precedence-
constrained jobs generated by each HSDFG in τ not
exceed the deadline of the job at the end of the sequence
relative to the release of the first job of the sequence,
and

2) There is a schedule meeting all deadlines for these jobs
that completes no more than (αm−m+ 1)|I| units of
execution within any interval I .

As stated right after Lemma 3, the first of these conditions can
be verified for each HSDFG in the system, in time pseudo-
polynomial in its representation. Observe that for the second
condition to hold, it is sufficient that work(τ, |I|, 1) ≤ (αm−
(m− 1))× |I| for all intervals I . We therefore conclude that

Lemma 5. Let α denote any constant ≥ 1. A system of
multiple independent sporadic real-time HSDFGs τ is schedu-
lable on m speed-α processors by the EDF-based scheduling

314

algorithm of [19] if each HSDFG in the system satisfies the
condition of Lemma 3 upon unit-speed processors, and

work(τ, t, 1) ≤ (αm− (m− 1))× t

for all values of t ≥ 0.

In performing schedulability analysis, it is typical to as-
sume that we have unit-speed processors available to us, and
to determine whether a given system is guaranteed to be
scheduled to meet all deadlines upon a platform comprising
such processors. We now restate the result of Lemma 5 in a
manner that allows us to answer this question. Let σ denote
any constant < 1. It is straightforward to mimic the derivation
of Lemma 1 with “unit-speed” replaced by σ and α replaced
by 1, to get

Theorem 2. Let σ denote any constant < 1. A system of
multiple independent sporadic real-time SDFGs τ is schedula-
ble on m unit-speed processors by the EDF-based scheduling
algorithm of [19] if each HSDFG in the system satisfies the
condition of Lemma 3 upon speed-σ processors, and

work(τ, t, σ) ≤ (m− (m− 1)σ)× t (7)

for all values of t ≥ 0.

Hence to show that a given τ is EDF-schedulable upon
m unit-speed processors it suffices, according to Theorem 2
above, to first verify that each HSDFG in the system satisfies
the condition of Lemma 3 upon speed-σ processors and if
so, to produce a value for σ such that Condition 7 holds for
all t ≥ 0. We refer to such a σ as a witness to the EDF-
schedulability of τ . To show that a given system of sporadic
real-time HSDFGs is EDF schedulable, we need to produce
a witness to its schedulability. A sufficient schedulability test
with speedup (2 − 1/m) is therefore immediately obtained
by checking whether σ ← m/(2m − 1) is a witness, and
declaring the task system EDF-schedulable if the answer is
“yes.” That is, the following constitutes a speedup-optimal
sufficient schedulability test for the EDF-based scheduling
algorithm of [19]:

1) Each HSDFG in τ should satisfy the condition of
Lemma 3 upon speed-m/(2m− 1) processors, and

2) For all values of t ≥ 0,

work
(
τ, t,

m

2m− 1

)
≤
(
m− m(m− 1)

2m− 1

)
× t (8)

Let us define the normalized utilization U(τ) of a system of
sporadic real-time SDFGs τ that is to be implemented upon
m unit-speed processors as follows:

U(τ) def
=
(∑
G∈τ

U(G)
)
/m,

where U(G) is as defined in Expression 2. Using arguments
essentially identical to those used in multiprocessor EDF
schedulability analysis for sporadic DAG tasks (or even for
simpler 3-parameter sporadic tasks), it is straightforward to
show that for task systems with normalized utilization bounded

from above by a constant strictly less than one, Condition 8
needs to be checked in at most pseudo-polynomially many
distinct values of t. This immediately yields the following
result:

Theorem 3. Speedup-optimal sufficient EDF-based schedu-
lability analysis for systems of sporadic real-time HSDFGs
can be done in pseudo-polynomial time, for systems with
normalized utilization bounded from above by a constant
strictly less than one.

Extending Theorem 3 to general SDFGs. Theorem 3 es-
tablishes that schedulability analysis for systems of homo-
geneous SDFGs can be done in pseudo-polynomial time.
What about general (i.e., not homogeneous) SDFGs? Here
our suggested approach is to first convert each SDFG to an
equivalent HSDFG using the algorithm of [12], and then apply
the schedulability test of this section. Since the conversion
algorithm of [12] may take exponential time and yield an
HSDFG of size exponential in the size of the original SDFG,
this implies that our schedulability analysis test may also take
time exponential in the representation of the SDFG (although
pseudo-polynomial in the representation of the equivalent
HSDFG). Perhaps this is not particularly unreasonable: it has
been observed that the conversion algorithm of [12] takes
exponential time and yields an HSDFG of size exponential in
the size of the original SDFG only in pathological cases, when
there is some inherent exponential blowup in the run-time
“behavior” of the SDFG. If this is the case and the behavior
of an SDFG is in fact exponentially-sized, perhaps it is overly
ambitious to be able to validate schedulability properties in
less than exponential time; we pose further consideration of
this question as an interesting open problem.

VI. SUMMARY

The Synchronous Data Flow Graph (SDFG) model is widely
used in the modeling of embedded real-time systems. In this
paper we have made an effort to apply real-time scheduling
theory to obtain a better understanding of the problem of
achieving highly resource-efficient implementations of SDFG-
modeled real-time systems. The first optimal algorithm for dy-
namically scheduling a collection of such tasks upon a preemp-
tive uniprocessor platform has recently been proposed [19],
[20]; here, we have extended this algorithm, and its analysis,
to identical multiprocessor platforms. We have proved that
the algorithm of [19] is speedup-optimal amongst all EDF-
based algorithms for solving this problem, and have designed
a speedup-optimal sufficient schedulability-analysis test.

ACKNOWLEDGEMENTS

This research has been supported in parts by NSF grants
CNS 1409175 and CPS 1446631, AFOSR grant FA9550-14-
1-0161, and ARO grant W911NF-14-1-0499.

REFERENCES

[1] H. I. Ali, B. Akesson, and L. M. Pinho, “Generalized extraction of
real-time parameters for homogeneous synchronous dataflow graphs,” in
2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, March 2015, pp. 701–710.

315

-

6

��
��

��
��
��

��
��
��

��
�
�
��
��

��
�
�
��
��

��

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

20

-

?

vin vout b

a

b

?

vin vout b

a

b

?

vin vout b

a

b

?

vin vout b

a

b

?

vin vout b

a

b

0 10 20 30 40 50

Fig. 6: The work function of Example 4, extended further out along the time-line than in Figure 5.

[2] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in Proceedings
of the Ninth ACM International Conference on Embedded Software,
ser. EMSOFT ’11. New York, NY, USA: ACM, 2011, pp. 195–204.
[Online]. Available: http://doi.acm.org/10.1145/2038642.2038672

[3] M. A. Bamakhrama and T. Stefanov, “Managing latency in
embedded streaming applications under hard-real-time scheduling,” in
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’12. New York, NY, USA: ACM, 2012, pp. 83–92. [Online]. Available:
http://doi.acm.org/10.1145/2380445.2380464

[4] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proceedings of the 11th Real-
Time Systems Symposium. Orlando, Florida: IEEE Computer Society
Press, 1990, pp. 182–190.

[5] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling
for Real-Time Systems. Springer Publishing Company, Incorporated,
2015.

[6] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in Proceedings of the IEEE Real-Time Systems Symposium,
ser. RTSS 2012, San Juan, Puerto Rico, 2012, pp. 63–72.

[7] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG task model,” in Proceedings of the
2013 25th Euromicro Conference on Real-Time Systems, ser. ECRTS
’13, Paris (France), 2013, pp. 225–233.

[8] A. Bouakaz, T. Gautier, and J. P. Talpin, “Earliest-deadline first schedul-
ing of multiple independent dataflow graphs,” in 2014 IEEE Workshop

on Signal Processing Systems (SiPS), Oct 2014, pp. 1–6.
[9] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D.

Theelen, “Latency minimization for synchronous data flow graphs,” in
Digital System Design Architectures, Methods and Tools, 2007. DSD
2007. 10th Euromicro Conference on, Aug 2007, pp. 189–196.

[10] J. Khatib, A. M. Kordon, E. C. Klikpo, and K. Trabelsi-
Colibet, “Computing latency of a real-time system modeled by
synchronous dataflow graph,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, 2016, pp. 87–96. [Online]. Available:
http://doi.acm.org/10.1145/2997465.2997479

[11] E. C. Klikpo and A. M. Kordon, “Preemptive scheduling of dependent
periodic tasks modeled by synchronous dataflow graphs,” in Proceedings
of the 24th International Conference on Real-Time Networks and
Systems, RTNS 2016, Brest, France, October 19-21, 2016, 2016, pp. 77–
86. [Online]. Available: http://doi.acm.org/10.1145/2997465.2997474

[12] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on
Computers, vol. C-36, no. 1, pp. 24–35, January 1987.

[13] ——, “Synchronous data flow,” Proceedings of the IEEE, vol. 75, no. 9,
pp. 1235–1245, Sept 1987.

[14] E. A. Lee, “A coupled hardware and software architecture for
programmable digital signal processors,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, 1986. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/1986/715.html

[15] M. Mohaqeqi, J. Abdullah, and W. Yi, Modeling and Analysis of
Data Flow Graphs Using the Digraph Real-Time Task Model. Cham:
Springer International Publishing, 2016, pp. 15–29. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-39083-3 2

316

[16] A. Mok, “Fundamental design problems of distributed systems for the
hard-real-time environment,” Ph.D. dissertation, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, 1983, available as
Technical Report No. MIT/LCS/TR-297.

[17] S. Neuendorffer, “The SDF Domain,” in Heterogeneous Concurrent
Modeling and Design in Java, C. Brooks, E. A. Lee, X. Liu, S. Neuen-
dorffer, Y. Zhao, and H. Zheng, Eds. EECS, University of California,
Berkeley, 7 2005, vol. 3 (Ptolemy II Domains), ch. 3, pp. 49–60,
memorandum UCB/ERL M05/23.

[18] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical
scheduling via resource augmentation,” in Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, El Paso, Texas,
4–6 May 1997, pp. 140–149.

[19] A. Singh, P. Ekberg, and S. Baruah, “Applying real-time scheduling
theory to the synchronous data flow model of computation,” in 2017
29th Euromicro Conference on Real-Time Systems. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, June 2017.

[20] ——, “Uniprocessor scheduling of real-time synchronous dataflow
tasks,” 2017, Under review.

[21] F. Siyoum, “Worst-case temporal analysis of real-time dynamic stream-
ing applications,” Ph.D. dissertation, PhD thesis, Eindhoven University
of Technology, 2014.

Appendix: Proof of Lemma 1
Let J denote an arbitrary collection of well-formed jobs,

for which each arrival-time, execution time, and deadline are
integers. Let S∞(J) denote a work-conserving schedule for
J upon an unbounded number of unit-speed processors. We
note two properties of S∞(J):

Property (K1): Each job begins and completes execution at
an integer time-instant.

Property (K2): S∞(J) dominates all valid schedules for J
upon unit-speed processors: at any point in time and for any
job, S∞(J) has executed at least as much of that job as any
valid schedule for J upon unit-speed processors.

Definition 4. Let an (m,α)-counterexample denote a well-
formed collection of jobs J that is scheduled correctly in
S∞(J), but not by EDF on m speed-α processors (m ∈
N≥2, α > 1).

A minimal (m,α)-counterexample is an (m,α)-
counterexample J , for which each subset J ′ (J is
scheduled correctly by EDF on m speed-α processors.

We will use the lemma below to prove the correctness of
Lemma 1.

Lemma 6. If J is a minimal (m,α)-counterexample then there
is some interval I such that any valid schedule for I must
complete strictly more than

(
αm − (m − 1)

)
· |I| units of

execution within the interval I .

Proof: Let tf denote the earliest time-instant at which EDF4

misses a deadline when scheduling J . Let t∗ denote the latest
instant at which EDF has executed at least as much of each
job as S∞(J) has. (We note that t∗ is well-defined since at
time zero EDF has completed at least as much of each job as
S∞(J) has.) Let I def

= [t∗, tf]. Let X denote the total length of
all the intervals in I during which all m processors are busy

4Throughout this proof, the term “EDF” should be taken to mean “EDF
executing upon m speed-α processors”.

in the EDF schedule. Let Y def
= |I| − X , and let Y1, Y2, . . . ,

denote the (distinct non-contiguous) intervals during which at
least one processor is idled in this EDF schedule.

Observe that for any t > t∗,∣∣∣[t∗, t] ∩⋃
`

Y`

∣∣∣
denotes the cumulative duration of the intervals in [t∗, t] during
which at least one processor is idled in the EDF schedule.

Let us define to to be the smallest t such that

α×
∣∣∣[t∗, t] ∩⋃

`

Y`

∣∣∣ ≥ (dt∗e − t∗)
Since at least one processor is idled at each instant during the
interval

∣∣∣[t∗, to] ∩⋃` Y`∣∣∣, and this entire interval lies after t∗

(i.e., to the right of t∗ on the time-line), any job executing in
S∞(J) during [t∗, dt∗e] will either have already completed, or
be executing in EDF during this interval. Therefore, EDF has
executed at least as much of each job by to as S∞(J) has by
dt∗e.

Observe that to ≥ dt∗e – otherwise, to would be a later
instant than t∗ at which EDF has completed at least as much
of each job as S∞(J) – a contradiction.

Define ti for i = 1, 2, . . . , (tf − dt∗e) in a manner similar
to how to was defined: ti is the smallest t such that

α
∣∣∣[t∗, t] ∩⋃

`

Y`

∣∣∣ ≥ (dt∗e − t∗) + i (9)

Claim 1. For each i ≥ 0

1) EDF has executed at least as much of each job by time
ti as S∞(J) by time dt∗e+ i, and

2) ti ≥ dt∗e+ i.

Proof of Claim 1: By induction on i.
BASE CASE (i = 0). Explicitly shown above.
INDUCTIVE STEP. Assume, as the inductive hypothesis (IH),
that it’s true for i; we will establish it for i+ 1.
To prove the first claim:
• By Property (K1) and the fact, following from the IH,

that ti ≥ (dt∗e+ i), it must be the case that all jobs that
were executed in S∞(J) during [dt∗e+ i, dt∗e+ (i+1)]
are available for EDF at each time-instant in the interval(
[ti, ti+1] ∩

⋃
` Y`

)
(or have already completed in the

EDF schedule).
• Since there is at least one processor idled by EDF

throughout
(
[ti, ti+1] ∩

⋃
` Y`

)
, it must be the case that

all jobs executed in S∞(J) during [t∗ + i, t∗ + (i + 1)]
that have not completed in EDF will be executed in the
EDF schedule during

(
[ti, ti+1] ∩

⋃
` Y`

)
.

To prove the second claim, we observe that otherwise ti+1

would be a later instant than t∗ at which EDF has completed
at least as much of each job as S∞(J) – this contradicts the
definition of t∗ as the latest instant at which this happens.

This completes the proof of Claim 1.

317

Let î def
= tf −dt∗e. By Claim 1 above, EDF will have executed

at least as much of each job by time-instant t̂i as S∞(J) does
by tf . But all jobs are assumed to meet their deadlines in
S∞(J); hence, for EDF to fail to schedule J correctly it is
necessary that t̂i > tf . Equivalently, it must be the case that
even if the entire range [t∗, tf] were considered in the LHS of
Equation 9, we would not be able to define t̂i:

α
∣∣[t∗, tf] ∩⋃

`

Y`
∣∣ < (dt∗e − t∗) + î

⇔ αY < (dt∗e − t∗) + î

⇔ αY <
(
tf − t∗

)
⇔ αY < |I|

Therefore during the interval I EDF completes at least

α(mX + Y) = α(m(|I| − Y) + Y)

= α(m|I| − (m− 1)Y)

= αm|I| − (m− 1)αY

> αm|I| − (m− 1)|I|
=

(
αm− (m− 1)

)
|I|

This completes the proof of Lemma 6.

We are now ready to prove the correctness of Lemma 1
(replicated below):

Lemma 1. Consider a well-formed collection of jobs J . Let
m ∈ N denote any positive integer, and α ∈ R≥1 any constant
that is ≥ 1. If there exists some schedule meeting all deadlines
for J upon unit-speed processors which, for any time interval
I , completes no more than (αm−m+1)·|I| units of execution
within I , then J is global-EDF schedulable on m speed-α
processors.

Let J denote a well-formed collection of jobs for which
there exists a schedule upon unit-speed processors meeting all
deadlines. Since such a schedule exists, if follows that S∞(S)
meets all deadlines. If J were not global EDF schedulable
upon m unit-speed processors, then there is some J ′ ⊂ J that
constitutes a minimal (m,α)-counterexample. By Lemma 6
above, this would require that there exist some interval I
over which any valid schedule for J ′ (and therefore, any
valid schedule for J) completes > (αm −m + 1) · |I| units
of execution within I , thereby contradicting the statement of
Lemma 1.

318

